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ABSTRACT 
This work presents a practical method for estimating the full kinematic state of a vehicle, along with sensor error 
parameters, through the integration of inertial and GPS measurements. This kind of system for determining attitude 
and position of vehicles and craft (either manned or unmanned) is essential for real time, guidance and navigation 
tasks, as well as for mobile robot applications. 
 
The architecture of the system is based in an Extended Kalman filtering approach in direct configuration. In this case, 
the filter is explicitly derived from the kinematic model, as well as from the models of sensors error.  The architecture 
has been designed in a manner that it permits to be easily modified, in order to be applied to vehicles with diverse 
dynamical behaviors. 
 
The estimated variables and parameters are: i) Attitude and bias-compensated rotational speed of the vehicle, ii) 
Position, velocity and bias-compensated acceleration of the vehicle and iii) bias of gyroscopes and accelerometers. 
Experimental results with real data show that the proposed method is enough robust for its use along with low-cost 
sensors. 
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1. Introduction 
 
The process for autonomously estimating the state 
of a vehicle (e.g position, velocity, orientation, 
etc.), while it is maneuvering along a trajectory, is 
often referred as navigation. 
 
The autonomous navigation is an important 
capability for both manned and unmanned 
vehicles. In our context the term "autonomous" 
refer to the capacity of the system for estimating 
the state of the vehicle without the aid of a human 
operator. Often, the autonomous navigation is a 
prerequisite for control tasks. 
 
The Inertial Navigation System (INS) is one of the 
most widely used dead reckoning systems. A 
typical INS fuses sensory information taken from 
inertial sensors (accelerometers) and rotational 
sensors (gyroscopes) in order to continuously 
estimate position and orientation of the body 
(vehicle). Because different sources of sensor 
errors are integrated over time, an INS can provide 
correct and high frequency (typically in the range  
 

 
 
of 100 to 200 Hz) information but only for short  
term. This fact is especially notorious when low-
cost sensors are used. On the other hand, a 
Global Positioning System (GPS) provides global-
referenced position and velocity estimations at low 
rate (typically in the range of 1 to 4 Hz).  The 
integration of both systems (INS and GPS) can 
generate a navigation system capable of exploiting 
the advantages of both, and also limits the 
drawbacks of the systems viewed by separate. 
Thus, a GPS-aided INS can produce estimates of 
the full state of the vehicle, both at high frequency 
as drift-free.  
 
The integration of inertial sensors with GPS is 
broadly classified as follows [25]: 
 
• Loosely coupled system.  
 
• Tightly coupled system. 
 
• Ultra-tightly coupled system 
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In loosely coupled systems [8-13],[16],[18] and [19], 
the GPS data (e.g. position velocity, etc) are fused 
explicitly with INS data. This kind of systems is 
significantly dependent on the availability of GPS data. 
 
In tightly coupled systems [6] and [13], the GPS raw 
measurements (e.g pseudo ranges) are fused 
directly with the INS data. The main advantage of this 
kind of methods is that the system can carry out GPS 
measurement updates, even if there are less than 
four satellites available. Their downside has to be 
with the increase of complexity.  
 
In Ultra-tightly coupled systems [26], the INS output 
(position, velocity and attitude) is used as an external 
input to the GPS receiver. The INS output aid in 
prepositioning calculation for faster signal acquisition 
and in interference rejection during signal tracking. 
The implementation of this kind of systems is often 
complicated because access to the GPS's firmware 
is required. 
 
Different techniques of state estimate have been 
used for integrating INS and GPS. Schemes 
presented in [1] and [2] are based in techniques of 
linear Kalman filtering. The Kalman filter (KF), 
commonly used in estimating the system state 
variables and suppressing the measurement noise, 
has been recognized as one of the most powerful 
state estimation techniques. The KF allows to merge 
information obtained from different sensor sources in 
a structured manner. For example in [29], a KF-
based method for estimating position is presented, 
this approach combines visual data with wireless 
sensors network information. Commonly methods 
based on linear filtering utilize simplified (linearized) 
models. Thus, some computational time is saved, but 
at the cost of some decrease in performance. 
However, the wide variety of processing devices 
currently available makes feasible the implementation 
of complex algorithms in order to improve 
performance. 
 
Due to the nonlinear nature of the problem, the 
nonlinear version of the Kalman Filter (The Extended 
Kalman Filter or EKF) has been the technique 
typically used to compute the GPS-INS solution. 
There are two basic ways for implementing the EKF: 
 
• Indirect formulation. 
 
• Direct formulation.  

The EKF in Indirect formulation (also referred as 
the error state space formulation), estimates a 
state vector which represents the errors defined 
by the estimated state and the estimated nominal 
trajectory. An error model for each component of 
the state is needed in order to estimate the 
measurement residual. The measurement in the 
error state space formulation is made up entirely 
of system errors and is almost independent of 
the kinematic model. Most of the approaches 
found in literature are based in this kind of 
configuration [3-13]. 
 
The EKF in Direct configuration (also referred to 
as total state space formulation) updates the 
vector state implicitly from the predicted state and 
the measurement residual (the difference 
between the predicted and current measurement). 
 
Method Integration 

type 
Estimated

errors Attitude Estimation
technique

[16] Loosely Gb,Gs,Ab,As Quat. I-EKF 
(Unscented)

[19] Loosely No Euler Neural 
Networks 

[6] Tightly Gb,Ab Euler i-EKF 
(Quadratic)

[9] Loosely Gb Quat. i-EKF 
[8] Loosely Gb,Ab DCM i-EKF 

[10] Loosely Gb,Ab Euler i-EKF 

[18] Loosely No Euler Particle 
Filter 

[11] Loosely Ab Euler i-EKF 
[12] Loosely * * i-EKF 
[13] Tightly Gb,Ab,Tb Quat. i-EKF 
This 
work Loosely Gb,Ab Quat. d-EKF 

 
Table 1. Resume of Methods. *Not specified.  For 

"Estimated errors" column: G = gyroscope, A = 
accelerometer, T = GPS time, b = bias, s = scale, (e.g. 

Gb means gyro bias). For "Attitude" column: DCM 
means Direction Cosine Matrix, and Quat. is the 

abbreviation of quaternion.  For "Estimation Technique" 
column, i-EKF = Extended Kalman Filter in indirect 

configuration, d-EKF = Extended Kalman Filter in direct 
configuration. In parentheses are indicated. 

 
In this kind of EKF configuration, the system is 
essentially derived from the kinematics. One of the 
characteristics of the direct configuration is its 
conceptual clarity and simplicity. A review on the 
EKF and its configurations can be found in [14]. 
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