

Vol. 12, June 2014538

Placing Safety Stock in Logistic Networks under Guaranteed-Service
Time Inventory Models: An Application to the Automotive Industry

L. A. Moncayo-Martínez*1,2, E. O. Reséndiz-Flores2, D. Mercado2 and C. Sánchez-Ramírez3

1 Department of Industrial and Operation Engineering
Instituto Tecnológico Autónomo de México (ITAM)
México, D. F., México
*luis.moncayo@itam.mx
2 Division of Postgraduate Studies and Research
The Technological Institute of Saltillo
Saltillo, Coahuila, México
3 División de Ciencias e Ingeniería
Department of Industrial Engineering & Manufacturing Science
Orizaba Institute of Technology
Orizaba, Veracruz, México

ABSTRACT
The aim of this paper is to solve the problem of placing safety stock over a Logistic Network (LN) that is represented
by a Generic Bill of Materials (GBOM). Thus the LN encompasses supplying, assembling, and delivering stages. We
describe, in detail, the recursive algorithm based on Dynamic Programming (DP) to solve the placing safety stock
problem under guaranteed-service time models. We also develop a java-based application (JbA) that both models the
LN and runs the recursive DP algorithm. We solved a real case of a company that manufactures fixed brake and
clutch pedal modules of cars’ brake system. After running JbA, the levels of inventory decreased by zero in 55 out of
65 stages.

Keywords: Safety Stock, Guaranteed-service time, Dynamic Programming, Automotive Industry.

RESUMEN
El objetivo de este artículo es resolver el problema de colocación inventario en una Red Logística (LN) que es
representada por una Lista de Materiales Genérica (GBOM), de manera que la LN tiene etapas de suministro,
ensamble y entrega. Describimos, a detalle, el algoritmo recursivo de Programación Dinámica (DP) para resolver el
problema de colocación de inventario en modelos de servicio garantizado. También programamos una aplicación en
java (JbA) que modela la LN y ejecuta las operaciones recursivas del algoritmo de DP. Resolvimos un caso real de
una empresa que manufactura módulos de frenos y pedales del clutch del sistema de frenos utilizados en los autos.
Los resultados muestran que los niveles de inventarios se reducen a cero en 55 de 65 etapas después de ejecutar
nuestra JbA.

1. Introduction

Manufacturing companies are highly pressured
into producing quality products and delivering them
to the right location, at the right quantity or amount,
and at the right place, subject to reduce both
manufacturing and logistic costs. In order to reach
this aim, companies have realised that a global
approach is required to coordinate operations
across the entire Logistic Network (LN) or Supply
Chain, e.g. share information to minimise the
bullwhip effect [1]; pass products' demand to
upstream members to reduce inventory levels [2]

or solve the routing and inventory problem
simultaneously [23,26]. Moreover, companies have
to dynamically evaluate the LN operations [24] and
reduce the complexity generated by the product
diversification [25] to reach the global aim of cost
reduction.

Global inventory management is an important
strategy in reducing manufacturing and logistic
costs because a proper inventory policy could
result in reducing the amount of safety and
pipeline stock.

Placing Safety Stock in Logistic Networks under Guaranteed Service Time Inventory Models: An Application to the Automotive Industry, L. A. Moncayo Martínez et al. / 538 550

Journal of Applied Research and Technology 539

In literature, the problem of placing inventory is
divided into single stage and multi stages. The first
one is a difficult but well studied problem, the
models used to solve it are deterministic (e.g.
economic order quantity and wagner-whitin model)
and stochastic (e.g. (r,Q) and (s,S) policies)[3].
The multi stage problem could be either stochastic-
service (SS) or guaranteed-service (GS). The main
difference between SS and GS is the way in which
a stage supplies components or assemblies to
other downstream stages.

Backorders are allowed in SS multi stage problem,
i.e. a fraction of an order cannot be filled at the right
time due to a lack of available supply [4-5]. Unlike
SS model, the GS model must serve the complete
order just in a guaranteed-service time .

Our paper deals with GS models in multi stages,
thus the problem is to minimise the cost of the
safety stock that every stage must hold in order to
serve its downstream stages just in the given
that the days of inventory required are U = + t -

, where is the time in which a stage must be
served by its upstream stages and t is the time
spent by a stage to perform its task.

The novelties of the proposed paper lie in the
methodology employed to solve a real-life LN and
in the java-based application programmed to solve
the DP algorithm used to solve the GS inventory
placing problem [2]. Additionally, we provide a
pseudo code full of practical insights to carry out
the recursive operations.

We implemented and applied the GS time
inventory model (GSTIM) to a company that
manufactures fixed brake and clutch pedal
modules. We both selected the product with the
highest demand and described the steps followed
to collect the necessary information to run the java-
based application.

In the following section, a literature review of the
GSTIM is provided. In section 3, the model is
defined and some assumptions are stated. In
section 4, the methodology used to implement the
GS model is depicted, so also the DP algorithm
and the java-based application are described. A
real case is described in section 5. Finally, results
are presented in section 6 and we draw some
conclusions in section 7.

2. Related Literature

In this section, we cite a set of approaches related to
GSTIM. Back in 1958, Simpson [6] solved the
problem of placing inventory over a serial process.
Adjacent stages were coupled together to equate the
incoming service time of a downstream stage with
the outbound service time of its upstream stage. The
optimum inventory level per stage was found by
determining the service time. It was proven that the
optimal service time in serial processes is found in an
extreme point property where the outgoing service
time is equal to either zero or its incoming service
time plus its processing time, i.e. using an all-or-
nothing inventory policy. A boundary demand is
used, thus it is interpreted as the amount of inventory
a company wants to satisfy from its safety stock.

Later, the same problem was solved by standard
operations of DP in [7] and was extended to supply
chains modelled as assembly networks [8], to
distribution networks [9], and to spanning trees [10].

In a recent approach, a stage could include more
than one upstream or downstream stage [2,11],
so we have to notice two important facts: i) in
case a downstream stage is served by multiple
upstream stages, the downstream stage has to
wait for the component with the longest service
time, and ii) in case an upstream stage serves
multiple downstream stages, the upstream stage
quotes the same service time to all the adjacent
downstream stages. Moreover, the assumption
about demand boundary remains and it is
supposed that the LN is designed already, thus
the time and cost of every stage is known.

The complexity of the aforementioned approach has
been proven to be NP-hard [12, 13]. As a result,
modification to the DP algorithms have appeared in
literature to solve bigger instances than those solved
efficiently using the DP standard algorithm, e.g.
CPLEX is used to iteratively solve a piecewise-linear
demand once redundant constrains are added [14];
branch and bound algorithm is used to reduce
complexity [15]; tailor-made heuristic has been
proposed [16]; and general purpose genetic
algorithms are used to solve the problem [17]. Other
generalizations that do not apply to our real-life case
included: capacity constraints [18], LN design
constraints [19], non-stationary demand [20], and
stochastic lead times [21].

Download English Version:

https://daneshyari.com/en/article/725305

Download Persian Version:

https://daneshyari.com/article/725305

Daneshyari.com

https://daneshyari.com/en/article/725305
https://daneshyari.com/article/725305
https://daneshyari.com

