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A B S T R A C T

Experience curves are widely used to predict the cost benefits of increasing the deployment of a technology. But
how good are such forecasts? Can one predict their accuracy a priori? In this paper we answer these questions by
developing a method to make distributional forecasts for experience curves. We test our method using a dataset
with proxies for cost and experience for 51 products and technologies and show that it works reasonably well.
The framework that we develop helps clarify why the experience curve method often gives similar results to
simply assuming that costs decrease exponentially. To illustrate our method we make a distributional forecast for
prices of solar photovoltaic modules.

1. Introduction

Since Wright’s (1936) study of airplanes, it has been observed that
for many products and technologies the unit cost of production tends to
decrease by a constant factor every time cumulative production doubles
(Thompson, 2012). This relationship, also called the experience or
learning curve, has been studied in many domains.1 It is often argued
that it can be useful for forecasting and planning the deployment of a
particular technology (Ayres, 1969; Sahal, 1979; Martino, 1993).
However in practice experience curves are typically used to make point
forecasts, neglecting prediction uncertainty. Our central result in this
paper is a method for making distributional forecasts, that explicitly take
prediction uncertainty into account. We use historical data to test this
and demonstrate that the method works reasonably well.

Forecasts with experience curves are usually made by regressing

historical costs on cumulative production. In this paper we recast the
experience curve as a time series model expressed in first-differences:
the change in costs is determined by the change in experience. We
derive a formula for how the accuracy of prediction varies as a function
of the time horizon for the forecast, the number of data points the
forecast is based on, and the volatility of the time series. We are thus
able to make distributional rather than point forecasts. Our approach
builds on earlier work by Farmer and Lafond (2016) that showed how
to do this for univariate forecasting based on a generalization of
Moore's law (the autocorrelated geometric random walk with drift).
Here we apply our new method based on experience curves to solar
photovoltaic modules (PV) and compare to the univariate model.

Other than Farmer and Lafond (2016), the two closest papers to our
contribution here are Alberth (2008) and Nagy et al. (2013). Both papers
tested the forecast accuracy of the experience curve model, and performed
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comparisons with the time trend model. Alberth (2008) performed fore-
cast evaluation by keeping some of the available data for comparing
forecasts with actual realized values.2 Here, we build on the methodology
developed by Nagy et al. (2013) and Farmer and Lafond (2016), which
consists of performing systematic hindcasting. That is, we use an estima-
tion window of a constant (small) size and perform as many forecasts as
possible. As in Alberth (2008) and Nagy et al. (2013), we use several
datasets and we pool forecast errors to construct a distribution of forecast
errors. We think that out-of-sample forecasts are indeed good tests for
models that aim at predicting technological progress. However, when a
forecast error is observed, it is generally not clear whether it is “large” or
“small”, from a statistical point of view. And it is not clear that it makes
sense to aggregate forecast errors from technologies that are more or less
volatile and have high or low learning rates.

A distinctive feature of our work is that we actually calculate the
expected forecast errors. As in Farmer and Lafond (2016), we derive an
approximate formula for the theoretical variance of the forecast errors,
so that forecast errors from different technologies can be normalized,
and thus aggregated in a theoretically grounded way. As a result, we
can check whether our empirical forecast errors are in line with the
model. We show how in our model forecast errors depend on future
random shocks, but also parameter uncertainty, as is only seldomly
acknowledged in the literature (for exceptions, see Vigil and Sarper,
1994 and Van Sark, 2008).

Alberth (2008) and Nagy et al. (2013) compared the forecasts from
the experience curve, which we call Wright's law, with those from a
simple univariate time series model of exponential progress, which we
call Moore's law. While Alberth (2008) found that the experience curve
model was vastly superior to an exogenous time trend, our results (and
method and dataset) are closer to the findings of Nagy et al. (2013):
univariate and experience curves models tend to perform similarly, due
to the fact that for many products cumulative experience grows ex-
ponentially. When this is the case, we cannot expect experience curves
to perform much better than an exogenous time trend unless cumula-
tive experience is very volatile, as we explain in detail here.

We should emphasize that this comparison is difficult because the
forecasts are conditioned on different variables: Moore's law is condi-
tioned on time, while Wright's law is conditioned on experience. Which
of these is more useful depends on the context. As we demonstrate,
Moore's law is more convenient and just as good for business as usual
forecasts for a given time in the future. However, providing there is a
causal relationship from experience to cost, Wright's law makes it
possible to forecast for policy purposes (Way et al., 2017).

Finally, we depart from Alberth (2008), Nagy et al. (2013) and most
of the literature by using a different statistical model. As we explain in
the next section, we have chosen to estimate a model in which the
variables are first-differenced, instead of kept in levels as is usually
done. From a theoretical point of view, we believe that it is reasonable
to think that the stationary relationship is between the increase of ex-
perience and technological progress, instead of between a level of ex-
perience and a level of technology. In addition, we will also introduce a
moving average noise, as in Farmer and Lafond (2016). This is meant to
capture some of the complex autocorrelation patterns present in the
data in a parsimonious way, and increase theoretical forecast errors so
that they match the empirical forecast errors.

Our focus is on understanding the forecast errors from a simple
experience curve model3. The experience curve, like any model, is only
an approximation. Its simplicity is both a virtue and a detriment. The
virtue is that the model is so simple that its parameters can usually be

estimated well enough to have predictive value based on the short data
sets that are typically available4. The detriment is that such a simple
model neglects many effects that are likely to be important. A large
literature starting with Arrow (1962) has convincingly argued that
learning-by-doing occurs during the production (or investment) pro-
cess, leading to decreasing unit costs. But innovation is a complex
process relying on a variety of interacting factors such as economies of
scale, input prices, R&D and patents, knowledge depreciation effects, or
other effects captured by exogenous time trends.5 For instance,
Candelise et al. (2013) argue that there is a lot of variation around the
experience curve trend in solar PV, due to a number of unmodelled
mechanisms linked to industrial dynamics and international trade, and
Sinclair et al. (2000) argued that the relationship between costs and
experience is due to experience driving expectations of future produc-
tion and thus incentives to invest in R&D. Besides, some have argued
that simple exponential time trends are more reliable than experience
curves. For instance Funk and Magee (2015) noted that significant
technological improvements can take place even though production
experience did not really accumulate, and Magee et al. (2016) found
that in domains where experience (measured as annual patent output)
did not grow exponentially, costs still had an exponentially decreasing
pattern, breaking down the experience curve. Finally, another im-
portant aspect that we do not address is reverse causality (Kahouli-
Brahmi, 2009; Nordhaus, 2014; Witajewski-Baltvilks et al., 2015): if
demand is elastic, a decrease in price should lead to an increase in
production. Here we have intentionally focused on the simplest case in
order to develop the method.

2. Empirical framework

2.1. The basic model

Experience curves postulate that unit costs decrease by a constant
factor for every doubling of cumulative production6. This implies a
linear relationship between the log of the cost, which we denote y, and
the log of cumulative production which we denote x:

= +y y ωx .t t0 (1)

This relationship has also often been called “the learning curve” or the
experience curve. We will often call it “Wright's law” in reference to
Wright's original study, and to express our agnostic view regarding the
causal mechanism. Generally, experience curves are estimated as

= + +y y ωx ι ,t t t0 (2)

where ιt is i.i.d. noise. However, it has sometimes been noticed that
residuals may be autocorrelated. For instance Womer and Patterson
(1983) noticed that autocorrelation “seems to be an important pro-
blem” and Lieberman (1984) “corrected” for autocorrelation using the
Cochrane-Orcutt procedure.7 Bailey et al. (2012) proposed to estimate
Eq. (1) in first difference

− = − +− −y y ω x x η( ) ,t t t t t1 1 (3)

where ηt are i.i.d errors N∼η σ(0, )t η
2 . In Eq. (3), noise accumulates so

that in the long run the variables in level can deviate significantly from
the deterministic relationship. To see this, note that (assuming x0=log
(1)=0) Eq. (3) can be rewritten as

2 Alberth (2008) produced forecasts for a number (1,2,… 6) of doublings of cumulative
production. Here instead we use time series methods so it is more natural to compute
everything in terms of calendar forecast horizon.

3 We limit ourselves to showing that the forecast errors are compatible with our model
being correct, and we do not try to show that they could be compatible with the ex-
perience curve model being spurious.

4 For short data sets such as most of those used here, fitting more than one parameter
often results in degradation in out-of-sample performance (Nagy et al., 2013).

5 For examples of papers discussing these effects within the experience curves frame-
work, see Argote et al. (1990), Berndt (1991), Isoard and Soria (2001), Papineau (2006),
Söderholm and Sundqvist (2007), Jamasb (2007), Kahouli-Brahmi (2009), Bettencourt
et al. (2013), Benson and Magee (2015) and Nordhaus (2014).

6 For other parametric models relating experience to costs see Goldberg and Touw
(2003) and Anzanello and Fogliatto (2011).

7 See also McDonald (1987), Hall and Howell (1985), and Goldberg and Touw (2003)
for further discussion of the effect of autocorrelation on different estimation techniques.
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