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General Morphological Analysis (GMA) is a method for structuring a conceptual problem space — called a
morphospace — and, through a process of existential combinatorics, synthesising a solution space. As such, itisa
basic modelling method, on a par with other scientific modelling methods including System Dynamics
Modelling, Bayesian Networks and various types graph-based “influence diagrams”. The purpose of this article is
1) to present the theoretical and methodology basics of morphological modelling; 2) to situate GMA within a

broader modelling theoretical framework by developing a (morphological) model representing different mod-
elling methods, and 3) to demonstrate some of the basic modelling techniques that can be carried out with GMA
using dedicated computer support.

1. Introduction

This article is about General Morphological Analysis (GMA) as a
basic, conceptual (non-quantified) modelling method. As such, it can be
compared with a wide range of other scientific modelling methods,
including System Dynamics Modelling (SDM), Bayesian Networks (BN)
and various forms of “influence diagrams”. As will be shown, all of
these modelling methods are based on variations among a common set
of components and properties, and are developed through the same
iterative process involving cycles of analysis and synthesis (Ritchey,
1991, 2012). Indeed, these variations in modelling properties can
themselves be modelled morphologically.

Firstly, the theoretical and methodological foundations of GMA as a
modelling method are presented. This will include the task of providing
a general operational definition of a (scientific) model, in order to
identify its components and properties. Next, GMA will be situated
within a wider modelling theoretical framework by developing a mor-
phology of modelling methods, which will allow for the systematic
identification, classification and comparison of different such methods.
The construction of this morphological (meta-) model will also serve as
an example of how to “build” morphological models in general. The
meta-model also gives us a graphical representation of how a given
modelling method can be transformed into another by altering one or
more of its parametric values. Finally, a number of GMA modelling
techniques will be demonstrated that have been made possible by the
introduction of dedicated computer support in the early 1990s.

We begin by discussing the basic nature of a “scientific model”, in
order to identify those modelling properties by which to create a
morphospace of modelling methods.
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2. What is a scientific model?

The notion of a model, like that of a system or a theory, belongs to a
class of concepts which essentially encompass an unbounded domain.
The open-ended nature of these concepts makes it difficult to give
them both an all inclusive and a precise definition (cf. Koperski,
2016; Portides, 2014). From the perspective of the philosophy of
science it is understandable to opt for an all-inclusive account, and
we often find the concept of a model being based on the notion of
“representation”, e.g. a model is a (mathematical, symbolic or con-
ceptual) representation of the thing being modelled. This is certainly
all inclusive, but is only a nominal designation. For our present pur-
poses a” real” or operational definition needs to be put forward -
even if it is not “all-inclusive” - in order to better clarify how models
are actually developed and how they do their work, i.e. their means of
representation.

Here, the notion of a (scientific) model is defined on the basis of 1)
its components and structure (variables and links) and 2) its method of
generation (analysis and synthesis). There is nothing essentially new in
this operational description, but since we claim that GMA is a funda-
mental modelling method itself, with its own unique place in the me-
nagerie of such methods, a review of these formal principles is war-
ranted. (The following text is a further development of work appearing
in Ritchey 2011a & 2012).

The following criteria are posited as necessary and sufficient for at
least a minimal definition of a scientific model. (At this point I am going
to drop the “scientific” qualifier and ask that this be understood.) The
two criteria are:
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A. A model must contain two or more (mental) constructs that can
serve as variables which can support a range of states or values —
otherwise called the variable's domain or value range (since we are
not necessarily working with directed mathematical functions here,
these two terms are interchangeable). Such variables represent those
aspects of reality (or an abstract system) one wants to treat, and
which make up the dimensions of the modelling space to be devel-
oped. We shall call these variables the model's parameters. [The term
parameter is being used here in its broader “systems science” sense,
as being one of a set of factors that defines a system and determines its
behaviour, and which can be varied in an experiment — including a
Gedankenexperiment.]

B. One must be able to establish relationships (e.g. causal, statistical,
logical, modal, normative) between the different parameters, such
that each parameter is “connected to” (i.e. constrained or influenced
by) at least one of the other parameters.

The development of these two components (variables and con-
nective links) into a model is essentially an iterative process of analysis
and synthesis. In the analysis phase, variables and their respective do-
mains are formulated which represent the model's initial problem space.
In the synthesis phase, connective relationships between parameters are
defined which bind the modelling space and determine its topological
properties. It also constrains the total modelling space in order to
produce a solution or outcome space.

Thus the basic framework for a model is an internally connected, n-
dimensional conceptual space which goes under a number of different
names depending on the nature of the model, its area of application and
the properties of the space to be emphasised: e.g. parameter space, con-
figuration space, state space or phase space, or, in the case of GMA, a
morphospace.

At this point we need to distinguish between so-called static and
dynamic models. (These terms are used somewhat differently in dif-
ferent modelling contexts, but are here generalised.) In dynamic models,
the variables have explicitly defined, specified domains; and the con-
nective links between variables are connections between their re-
spective domains. This means that the modelling space can be ma-
nipulated by treating one or more of the model's variables as
“independent”, varying its values (as inputs) and realising the results on
the remaining “dependent” variables (as outputs). This is what we
usually think of as a proper “model” in science. Included here are SDM,
BN and GMA.

In static models, the variables are treated as black boxes and only
an overall (graphic) connective structure is indicated. No dynamic
input-output variability is obtainable. Indeed, this is why such
“models” are often referred to as diagrams, charts or graphs. Included
here are flow charts, classical influence diagrams and so-called
system dynamics (SD) diagrams. Although we are primarily con-
cerned with dynamic models, we will include static models in the meta-
model in order to mark out the interface between these two basic
modelling types.

It is interesting to note that this general operational definition of
a model is quite similar that of an experiment. In experimental re-
search the aim is to design an environment by which one is able to
manipulate designated (“independent”) variables in order to ex-
amine the effect on the remaining (“dependent”) variables. Thus the
very definition of an experiment involves the identification of
variables and a “set up” that both creates and allows one to examine
the (e.g. causal) connections between such variables. In this sense,
dynamic models in general can be regarded as conceptual experiments
or thought experiments (although this is only one aspect of the
notion of thought experiments; see e.g. Sorensen, 1992). This is why
we have often referred to morphological models as conceptual la-
boratories.
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3. A morphology of modelling methods

On the basis of this operational definition of a model, we will pro-
ceed to develop a theoretical morphospace by which we can identify
and compare a range of different modelling methods, including GMA
itself. The development of this meta-model will also serve as a proce-
dural example of how to create a (relatively simple) morphological
model.

We begin with the analysis phase of defining the parameters (i.e.
variables and their respective domains) which represent the meta-
model's initial “problem space”. Note that variables in morphological
models consist of discrete category variables. There are no metric re-
lationships or numerical calculations involved. Even if a variable in a
morphospace may look like a magnitude or interval scale variable (e.g.
age, weight, income bracket), they are nonetheless treated as discrete
categories and assessed as such. The only scaling property utilised in
classical morphological modelling is “rank order”. (Some extended
forms of GMA allow for the use of probabilities or other numeric re-
lationships but, as we shall see, this in effect is a shift into another
modelling type.)

For the purposes of this (meta-) model, we employ the following five
parameters (further developed from Ritchey, 2012):

P1. Variable type: Are the domains of the variables (a) continuous,
(b) discrete or (c) unspecified (black boxes)?

P2. Directionality of connective links: Are the connections between the
variables (a) directed (asymmetric) or (b) non-directed (symmetric)?
P3. Quantification of connectivity: Are the relationships of con-
nectivity between the variables (a) quantified or (b) non-quantified?
P4. Cyclic relationships: Does the model allow for (a) cyclic con-
nectivity (closed loops, circular feedback) between the variables, or
is the model (b) acyclic.

P5. Type of connectivity: What is the nature of the connective re-
lationships between variables? For instance, are they (a) mathema-
tical/functional, (b) probabilistic, (c) non-causal (e.g. logical, modal,
normative), or (d) unspecified (or quasi-causal).

First of all, one may ask why just these five particular parameters
have been chosen to represent the basic properties of the meta-model.
They were chosen because 1) we have to start somewhere and 2) they
make up some of the simplest and fundamental operational properties
that can be identified (note that P1 is given, and P2, 3& 4 are basic
parameters in mathematical graph theory, the skeletal form of a mod-
elling theory). A more complete morphology could certainly treat a
wider range of modelling properties, including the distinctions between
e.g. different scaling types; open vs. closed modelling contexts; hier-
archical vs. non-hierarchical variable structure; the distinction between
different types of uncertainty; and whether or not mereological (whole-
part) interactions and self-reference is accounted for. However, the
present five variables will provide a relatively broad field of modelling
methods which will give a first illustration of how GMA can be situated
within such a meta-modelling framework.

These variables thus make up the parameters of a morphospace as
shown in Fig. 1. This 5-dimensional space contains 96
(=3 x 2 X 2 X 2 X 4) formal configurations or potential morphotypes,
each represented by one condition selected under each of the para-
meters. This represents the model's total problem space. The specific
configuration shown in Fig. 1 (dark cells) represents the modelling
properties of one particular modelling type — in this case a morphological
model.

[Note that this morphological (meta-) model is unusually small. A
“normal” scenario, strategy or policy model will typically have 7-12
parameters and a problem space of between 50,000 and several million
configurations. See the examples used to describe GMA modelling
techniques below.]
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