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Technological improvement trends such as Moore's law and experience curves have been widely used to under-
stand how technologies change over time and to forecast the future through extrapolation. Such studies can also
potentially provide a deeper understanding of R&D management and strategic issues associated with technical
change. However, such uses of technical performance trends require further consideration of the relationships
among possible independent variables — in particular between time and possible effort variables such as cumu-
lative production, R&D spending, and patent production. The paper addresses this issue by analyzing perfor-
mance trends and patent output over time for 28 technological domains. In addition to patent output,
production and revenue data are analyzed for the integrated circuits domain. The key findings are:
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Quantitative 1. Sahal's equation is verified for additional effort variables (for patents and revenue in addition to cumulative
Empirical trends production where it was first developed).
2. Sahal's equation is quite accurate when all three relationships — (a) an exponential between performance and
time, (b) an exponential between effort and time, (c) a power law between performance and the effort vari-
able — have good data fits (12 > 0.7).
3. The power law and effort exponents determined are dependent upon the choice of effort variable but the time
dependent exponent is not.
4. All 28 domains have high quality fits (> 0.7) between the log of performance and time whereas 9 domains
have very low quality (r? < 0.5) for power law fits with patents as the effort variable.
5. Even with the highest quality fits (r? > 0.9), the exponential relationship is not perfect and it is thus best to
consider these relationships as the foundation upon which more complex (but nearly exponential) relation-
ships are based.

Overall, the results are interpreted as indicating that Moore's law is a better description of longer-term techno-
logical change when the performance data come from various designs whereas experience curves may be

more relevant when a singular design in a given factory is considered.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction social changes were identified, but as with all historical studies, the

lack of a counterfactual (what happened if a specific technology did

An essential element of many approaches to research on technical
change is an understanding of the overall societal impacts of specific
technologies. The key methodology for many such studies is essentially
historical involving detailed examination of the various interacting so-
cial and technical aspects of specific technological changes. Excellent ex-
amples of such studies include time keeping (Landes, 1983/2000),
electric power (Hughes, 1983), the transistor (Riordan & Hoddeson,
1997), railroad economic impact (Fogel, 1964) and diverse technologies
(Rosenberg, 1982). In almost all of these cases, numerous interacting
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not occur) renders precise knowledge unobtainable. The topic of this
paper is a complementary way of studying technical change — quantita-
tive empirical performance trends — and the aim of this paper is to im-
prove the utility of this second approach. However, the link between
performance trends and overall social impact is not simple.

Even with a narrow focus, for example, on the economic impact of a
specific technical change (railroads in America in the late 19th century),
there have been significantly different estimates of the actual impact of
railroads (vs. a no railroad case) (Fogel, 1964; Fishlow, 1965). This is
partly due to the fact that other technologies (for example canals) can
be presumed to fulfill very different roles in the counterfactual case
and partly due to the fact that the full impact of one technology on
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others is highly complex — for example railroads and coal mining
(Rosenberg, 1979). More recent work has made progress in decoupling
the effects — for example relative to the role of computers in the economy
(Brynjolfsson & McAfee, 2014) — but the complications are yet severe for
quantitative estimation. Nonetheless there is wide agreement that techni-
cal change has enormous impact on society. Improvements in the cost
and performance of new technologies enable technological discontinu-
ities (Christenson, 1997) and large improvements in productivity
(Solow, 1957) which in turn drive companies out of business, lift the eco-
nomic level of many and generally transform society in profound ways.
While it would be foolish to postulate that quantification will answer all
of the important questions about technical change, this paper is based
upon the belief that improvement of our theories of technical change
will be aided by more dependable quantitative data about improvement
of technologies. Indeed, many theories of technical change (Christenson,
1997; Abernathy & Utterback, 1978; Abernathy, 1978; Foster, 1985;
Rosenbloom & Christensen, 1994; Tushman & Anderson, 1986;
Utterback, 1994; Romanelli & Tushman, 1994) involve assumptions and
hypotheses about such trends over the life cycle of a technology.

This paper attempts to make technical performance trends a more re-
liable part of the empirical arsenal for those studying technical change by
clarifying an important issue. In particular, the research question of using
an effort variable (such as patent activity, R&D spending, production, or
revenue) or time as the independent variable is at the heart of this
paper. Section 2 states the research question and analyzes past research
concerning effort variables and time as the independent variable while
Section 3 presents the data and methods used in our research. Section 4
presents performance trend results for 28 technological domains empir-
ically comparing use of time and patents as effort variables: the section
first analytically generalizes study of effort variables. Section 5 interprets
the results and discusses their implications in terms of the quantitative
technical performance trend of technologies.

2. Multiplicity of independent variables

An issue that must be addressed if one is to improve the utility of
quantitative trend description is to determine the most appropriate
independent variable. Thus, the first of our two coupled research ques-
tions: Is a framework that assumes an exponential relationship between
performance and time better, worse or equivalent for quantitative em-
pirical description than a framework that assumes a power-law rela-
tionship between performance and an effort-variable? The second
research question is how one might empirically answer the first
question.

The existing literature has multiple views on the better independent
variable. For example, MacDonald and Schrattenholzer (2001) make a
strong argument against using time as the independent variable:

“For most products and services, however, it is not the passage of time
that leads to cost reductions, but the accumulation of experience. Unlike
a fine wine, a technology design that is left on the shelf does not become
better the longer it sits unused.”

One counterbalance to this apparent drawback of using time is the
fact that measurement of effort introduces more needed data searching.
More importantly, measurement of time is unambiguous whereas effort
is ambiguous since it can be assessed according to several distinct con-
cepts. The original research by Wright (1936) and further extensions
(Alchian, 1963; Arrow, 1962; Argote & Epple, 1990; Benkard, 2000;
Thompson, 2012; Dutton & Thomas, 1984) use cumulative production
as the independent variable (the equation used will be discussed
below). Although Wright treated learning as within a single plant
(and for specific airplane designs), the same independent variable is
now sometimes used more widely raising significant unit of analysis is-
sues. In particular, researchers often (Argote & Epple, 1990; Dutton &
Thomas, 1984; Ayres, 1992) treat cumulative production of an entire

(usually global) industry as the independent variable. However, this re-
quires more careful definition of “industry” than is usually offered. In
addition, this broad approach almost always introduces ambiguity
about the initial values of output needed for cumulative production
and thus also introduces data manipulation issues. To put it simply, de-
termining how many and when unrecorded early units were produced
is very problematic.

Another issue involves defining effort since R&D and new designs —
not just production — are important in overall technical change. The
quotation above (MacDonald & Schrattenholzer, 2001) implies that
the unit of analysis is a “technology design” but technical change does
not proceed simply by continuing to accumulate experience on existing
designs but also through invention and creation of new designs. Recog-
nizing this, some who take the broader view argue that cumulative pro-
duction is not then “learning by doing” but instead an indirect — more
or less total — measure of relevant effort (Ayres, 1992). More direct mea-
sures of such broader relevant effort include number of patents, R&D
spending, and sales revenue: all of these as well as cumulative produc-
tion have issues in initial values and are more difficult to obtain. For
these as well as historical reasons, much of the practice for independent
variables for effort remains cumulative production — despite identifica-
tion of significant issues in interpreting such studies (Benkard, 2000;
Thompson, 2012; Dutton & Thomas, 1984).

In addition to its passive nature, time as the independent variable
conceptually seems to assume technology development is fully exoge-
nous to what is happening in the economy. Since the consensus is that
there are strong endogenous aspects of technology development, a
fully exogenous assumption is counter-intuitive to those thinking pri-
marily about causes. However, time indirectly contains the endogenous
drivers as well as any exogenous drivers. For example, if the production
rate of an artifact is constant, then cumulative production and time are
proportional (with the proportionality constant the rate of produc-
tion) so learning by doing for factory workers is also implicitly
contained within the time variable. Similar arguments apply to
R&D spending, revenue and numbers of patents with a direct rela-
tionship realized if the rates of each are constant over time. The ob-
vious weakness of these indirect entailments for time is that the
effort-variable (patent production, revenue or R&D spending) is
not necessarily constant over time. A similar issue arises for cumula-
tive production because other suggested effort variables (profits,
R&D spending, patents, etc.) are not directly proportional to cumula-
tive production. Indeed, cost or revenue per unit is the usual depen-
dent variable so revenue per unit decreases with time: R&D spending
and patents are proportional to revenue — not to units. An additional
practical and theoretical obstacle to the use of cumulative produc-
tion as the independent variable is the recent work showing that
large performance improvements are often found before any com-
mercial production occurs (Funk & Magee, 2015).

A preliminary conclusion could be that time casts “too wide a net” to
give adequate emphasis to the endogenous affects in technological
progress but that any specific effort variable “casts too narrow a net”
to adequately capture all the endogenous efforts and captures none of
the broader effects including “spillover” from efforts outside the implicit
unit of analysis.

Perhaps surprisingly, given this qualitative story of differences in the
approaches, in a very important way the two approaches are equivalent.
Important steps in showing this equivalence have been taken by Sahal
(1979), Nordhaus (2009), Nagy et al. (2013). The mathematical rela-
tionships (and the inter-relationship among them) specify this equiva-
lence. A generalization of Moore's Law! that includes only performance
qis

q = do exp{k(t—to)} (1)

1 q in the original or actual Moore’s Law is the number of transistors on a wafer.
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