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The ability to forecast new product growth is especially important for innovative firms that
compete in the marketplace. Today many new products exhibit very strong seasonal
behaviour, which may deserve specific modelling, both for producing better forecasts in the
short term and for better explaining special market dynamics and related managerial
decisions. By considering seasonality as a deterministic component to be estimated jointly
with the trend through Nonlinear Least Squares methods, we have developed two extensions
of the Guseo-Guidolin model that are able to simultaneously describe trend and seasonality.
Such models are based on two different but equally reasonable approaches: in one case we
consider a simple additive decomposition of a time series and design a model in which
seasonality is directly added to the trend and jointly estimated with it; in the other we design a
more complex structure, mimicking that of a Generalized Bass model and embed two separate
seasonal perturbations within the dynamic market potential and the corresponding adoption
process. The different characteristics of two products, a pharmaceutical drug and an IT device,
make it possible to appreciate empirically various modelling options and performances. Both

models are quite simple to implement and to interpret from a managerial point of view.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The ability to model and predict the diffusion of
innovations is particularly important for firms that develop
and launch new products and services in increasingly
complex and competitive markets. Diffusion research is
aimed at describing the spread of an innovation by modelling
its entire life-cycle. There is a quite long tradition in this field:
wide research has been produced to capture several phe-
nomena visible in sales data. Particular effort has been
devoted to extending the structure of the basic and most
known Bass model, BM [1], by taking into account price
dynamics, competition, targeted or pulsing advertising
strategies, network externalities, consumer heterogeneity
and technological generations (for a review, see [2,14,11]),
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arguing that these may help explain turning points in
life-cycle such as take-off, saddle and technological substitu-
tion. One of the most famous generalisations of the Bass
model is the Generalized Bass model, GBM, by Bass et al. [3].
By the multiplicative inclusion of a general intervention
function x(t), the GBM is able to capture the effect of many
external actions that modify the speed of the diffusion
process, by advancing or delaying adoptions. Depending on
the form of x(t), the GBM may identify intense and fast
shocks or more stable ones that may be imputed to
marketing strategies, political regulations or environmental
upheavals. The GBM represents an essential answer to
include the effect of external actions into diffusion, thanks
to a closed-form solution due to an interpretable Riccati
equation. However, as in the BM, in the GBM the market
potential is constant, which indicates that x(t) acts on
the temporal shape of diffusion and not on its size. A
recent model generalising the BM with a variable market
potential has been proposed by Guseo and Guidolin in
[7]. The closed-form solution of this model shows that the
market potential has a general and multiplicative structure.
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A particular specification of it is given in [7] where the
market potential is made dependent on a communication
process that co-evolves with adoption. Several applied cases
have shown the efficiency of this model for descriptive and
predictive purposes, moreover giving an alternative expla-
nation to the saddle between two overlapping subcycles
often observed in product growth (see [8]). Indeed, a typical
focus of diffusion models is to provide an efficient description
and interpretation of the mean trajectory of a life-cycle so
that a seasonal pattern in sales data has not been often
studied in an explicit way, although several products are
clearly characterised by it. A pioneering work in the area of
seasonal diffusion of innovations modelling is the paper by
Radas and Shugan [13]. In this work the authors focus on
“any predictable seasonal pattern caused by exogenous factors
(ie., beyond one firm's control) such as holidays, government
actions, industry traditions, weather, social phenomena, sum-
mer and school years.” In this view, seasonality is considered as
a given pattern, which arises independently from agents'
decisions. However, an interesting definition of seasonality is
provided by Hylleberg in [9], who states that it is the systematic,
although not necessarily regular, intra-year movement caused by
the changes of weather, the calendar, and timing of decisions,
directly or indirectly through the production and consumption
decisions made by the agents of the economy. While seasonality
is considered less relevant for long-term evaluations, it is much
more important in medium-short periods both for demand
prediction and for supply organisation. Seasonality may be
exploited by firms for building their marketing strategies.
Seasonal behaviour is typically visible when data are collected
with monthly or quarterly frequencies and some works on
diffusion concentrated on the issue of temporal aggregation of
data: in [12] quarterly or monthly seasonally adjusted data are
compared with annual data, finding that the former perform
better in terms of parameter estimates and in [10] it has been
noticed that the smooth development of sales typical of the
Bass model matches better with data at yearly frequency than
at higher frequency. Indeed, the aggregation of monthly
or quarterly data to obtain a smoother shape of sales
determines a loss of information. Moreover, since product
life-cycles are increasingly shortening due to high compe-
tition, it becomes more and more necessary to have
short-term projections, by accurately analysing not only
the trend of sales but also their oscillations within the year,
which in some cases may be very strong. In fact, the sales
pattern of many technological devices exhibits strong
seasonal oscillations, which may be partly explained by
the behaviour of consumers and partly by the business
strategies of the producer (see [5]). Following Wei [17], for
instance, typical methods developed in time series analysis
for seasonality modelling are:

a) the regression method, which assumes that the seasonal
component is deterministic and may be described as a
linear combination of seasonal dummy variables (see, for
instance [10]) or as a linear combination of harmonic
functions of various frequencies (see, among others [6]).
Notice that this second method gives rise to more
parsimonious models, due to the Fourier approximations;

b) the moving average method, which estimates the non-
seasonal component of a series, N(t), by using a symmetric

moving average operator. The seasonal component, S(t), is
obtained by subtracting the estimated nonseasonal com-
ponent N(t) from the original series Y(t). The series with
seasonal component removed, Y(t) — S(t) is referred to as
the seasonally adjusted series;

the autoregressive method, which extends stochastic ARIMA
models with the seasonal ARIMA models, SARIMA or
SARMAX, developed by [4], assuming a stochastic nature
of seasonality.
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In particular, the SARMAX approach interprets seasonality
as a “polynomial” structure within the autoregressive moving
average effects of the residual process. If z/(t) = f(t,3) + &(t)
denotes a general diffusion model, where f(t,3) is the
systematic part and g(t) a stationary process including
seasonal components, then we may estimate 3 at a first
stage with the NLS technique, which is nonparametric
in nature, and, at a second stage, the specific SARMAX
parameters, such as,

w(B)D(B’) (2 (- (t.B)) = 9(B)O(B")a, (M

with a, a WN process, B, B° the standard and seasonal
backward operators and ¥(B), ¢(B°), 9(B) and O(B®) the
usual backward polynomials of order p, P, ¢ and Q,
respectively. For an example, see [8]. In this paper we
consider seasonality as a deterministic component to be
estimated jointly with the trend through the Nonlinear Least
Squares, NLS, technique (see [15]). Specifically, we develop
two special extensions of the Guseo-Guidolin model in [7],
able to describe trend and seasonal components simulta-
neously. Such models are designed by starting from very
different approaches:

a) in one case we consider a classical additive decompo-
sition of a time series, conveniently modified to account
for the effect of life-cycle dynamics on the seasonal
pattern, and develop a model where seasonality is
added to the trend and estimated simultaneously with
it;

in the other we mimic the structure of a Generalized Bass
model and embed seasonal perturbations in a Guseo-
Guidolin model, which may operate either on the commu-
nication process, on the adoption one, or on both. This
proposal appears particularly stimulating both in theoretical
and empirical terms, because it allows identify two possible
sources of seasonality, that is consumer attitudes on the one
hand and firm communication/distribution efforts on the
other. A basic suggestion for introducing seasonality into
the GBM, through the intervention function, was proposed
by [13].

=)
=

The paper is structured as follows. In Section 2 we
present the basic features of the Generalized Bass model
and of the Guseo-Guidolin model. In Section 3 we illustrate
the two seasonal extensions of the Guseo-Guidolin model,
highlighting the different approaches adopted in model
building. In particular subsection 3.1 is dedicated to
presenting the Guseo-Guidolin model with an additive
seasonal component, while subsection 3.2 proposes the
generalisation of the Guseo-Guidolin model with the
introduction of two seasonal intervention functions. In
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