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a b s t r a c t

The onset of instability in a layer of dielectric micropolar fluid under the simultaneous action of an AC
electric field and temperature gradient has been investigated. The dispersion relation has been derived
and various critical values of non-dimensional Rayleigh number in the fluid layer have been determined.
The influence of micropolar viscosity and electric Rayleigh number on the onset of convection has been
analyzed. Thermal Rayleigh number has been computed for various values of electric Rayleigh number
for the onset of instability. The stabilizing and destabilizing effects of electric Rayleigh number, micro-
polar viscosity and Prandtl number have been discussed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Electro-hydrodynamics is concerned with the mechanics of
fluid flow under the interactions of externally applied electric field.
The externally applied electric field on the fluid motion generates
an instability phenomena in microchannels. It has been noticed
that using electric force in the motion of fluids is a very effective
method in getting a variety of results and functions. These results
are very helpful in the application of micro-fluidic devices which
are widely used now a days. The applications of electro-
hydrodynamic transport phenomena may be found in the area of
mechanical engineering, where it is used in devices like electroki-
netic assays, electro-spray ionization, electro-coalescence and
mixing, electrostatic printing and spinning. The instability of flow is
required in certain applications such as in mixing, while stable flow
is typically the preferred state (e.g. in assays and ionization) may be
required in some other devices. Thus the demarcation between the
stable and unstable states is of great practical importance.

A temperature gradient applied to a dielectric fluid produces a
gradient in the dielectric constant and electrical conductivity.
Keeping this fact in mind, several problems of the onset of

convection instability in a horizontal layer of dielectric fluid under
the action of a vertical DC electric field and a vertical temperature
gradient have been investigated in the past. Notable among them
are Gross and Porter [1], Gross [2], Gelmont and Ioffe [3], Turnbull
[4,5], Roberts [6], Takashima and Aldridge [7] and Lin [8]. The
application of a DC electric field results in the accumulation of free
charge in the fluid. The free charge so build up occurs exponentially
in time with a time constant ε/s, where ε is the dielectric constant
and s is the electrical conductivity. This time constant is known as
the electrical relaxation time. If instead of a DC electric field, an AC
electric field is applied at a frequency which is much higher than
the reciprocal of the electrical relaxation time, then the free charge
cannot accumulate due to the rapid movement. The electrical
relaxation time of most dielectric fluids appear to be sufficiently
long to make free charge effects negligible at standard power line
frequencies. In such cases, the dielectric loss is too low to make any
effective contribution in the temperature field. At this very
moment, variations in the body force are so rapid that its mean
value is taken as the effective value in determining fluid motions,
except in the case of fluids of extremely low viscosity. Therefore, the
case of AC electric field is easy to manage as compared to the case of
DC electric field. The effect of AC and/or DC electric field in the onset
of convection in a dielectric fluid layer play very important role and
has been investigated by several researchers in the past, e.g., Rob-
erts [6], Jones [9], Meakawa et al. [10], Saville [11], Shivkumara et al.
[12] including several others. Analysis of electro-hydrodynamic
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instability in a horizontal fluid layer with electrical conductivity
gradient subjected to a weak shear flow has been discussed by
Chang et al. [13]. Recently, a study of rotating couple stress
dielectric fluid layer has been attempted by Shivkumara et al. [18]
and electro convection in a micropolar fluid under the effect on
non-uniform temperature gradient has been investigated by Pra-
nesh and Baby [19].

Many problems of thermal convection based on Chandrasekhar
model [15] in a horizontal layer of Newtonian fluid heated from
below under varying assumptions of hydrodynamics and hydro-
magnetics have been studied in the past. One of the main objective
in all these problems is to determine the critical Rayleigh number
and to study the effect of various parameters incorporated on the
onset of convection in the fluid layer. It is doubtless to advocate that
the fluid characteristics (e.g., suspended particles, salinity, nano-
particles etc) do affect the onset of convection and play very
important role in better understanding the entire convection
phenomena. Keeping in view the importance of fluid filaments, we
aimed to study the problem of onset of instability in a horizontal
layer of micropolar fluid under the action of AC electric field and
temperature gradient. The theory of micropolar fluid introduced
earlier by Eringen [14] has been employed, in which the fluid par-
ticles can undergo micro-rotation, in addition to translation.
Colloidal fluids, physiological fluids, cellular fluid, fluid coming out
as industrial waste, some paint like fluids etc lie within the category
of micropolar fluids. The instability of micropolar fluid under the
effect of various parameters has been extensively studied by many
authors. The reference of Datta and Sastry [16] and Siddheshwar
and Pranesh [17] are worth notable.

2. Mathematical formulation

Consider a layer of incompressible dielectric micropolar fluid
having thickness d and of infinite extent. Referred to cartesian co-
ordinate system (x, y, z), we take the origin at the bottom of the
layer and z-axis normal to the fluid layer in the gravitational field.
Thus the fluid layer is bounded below and above by the planes z¼ 0
and z¼ d respectively. Both the lower and upper surfaces are
maintained at constant temperatures T0 and T1(<T0) respectively. In
addition to the temperature gradient, a uniform vertical AC electric
field has also been imposed across the layer. The lower surface is
grounded, while the upper surface has been kept at an alternating
(60 Hz) potential whose root mean square value is f.

Following Eringen [14] and Landau and Lifshitz [20], the rele-
vant basic equations governing the system in the absence of body
couples are given as

V$v ¼ 0; (1)

r0
Dv
Dt

¼ �Vpþ rgþ ðmþ kÞV2v þ kV�Pþ fe; (2)

r0j
DP
Dt

¼ ðεþ b0ÞVðV$PÞ þ g0V2Pþ kðV� v � 2PÞ; (3)

r0cv
DT
Dt

¼ ktV2T þ dðV�PÞ$VT ; (4)

V$ðεEÞ ¼ 0; (5)

V� E ¼ 0; (6)

where v¼ (u,v,w), P, g¼ (0,0,�g), r, p, j, cv, kt, T, d, ε, E¼ (0,0,Ez)
represent respectively velocity, spin, gravitational acceleration,

density, pressure, micro-inertia, specific heat at constant volume,
thermal conductivity, temperature, coupling coefficient between
heat flux and spin flux, electric constant and electric field. Equation
(6) gives that E¼�Vf, where f is the root mean square of the
electric potential. The quantities ε, b

0
, g

0
, and k are the micropolar

fluid viscosities and

D
Dt

≡
v

vt
þ v$V;

is the material derivative. The last term in Equation (2), namely, fe is
the force of electric origin given by (see Landau and Lifshitz [20],
pp-68)

fe ¼ reE� 1
2
E2Vεþ 1

2
V

�
r
vε

vr
E2

�
: (7)

In our analysis, we shall neglect the first term, namely, reE
representing the ‘Coulomb force’ as compared to the di-
electrophoretic force term (�½E2Vε) for most dielectric fluid in
Ref. 60Hz AC electric field. Moreover, we shall assume that themass
density r and the dielectric constant ε are linearly dependent on
temperature field as

r ¼ r0½1� aðT � T0Þ�; ε ¼ ε0½1� eðT � T0Þ�; (8)

where a is the coefficient of volume expansion and e is the coeffi-
cient of relative variations of the dielectric constant with temper-
ature, which is assumed to be small. Modifying the pressure term
using the equation

P ¼ p� 1
2
r
vε

vr
E2: (9)

Now, equation of motion (2) with the help of Equations (7) and
(9) can be written as

r

�
vv
vt

þ ðv$VÞv
�
¼ �VP þ rgþ ðmþ kÞV2v þ kV�P� 1

2
E2Vε;

(10)

after retaining only the di-electrophoretic force term.
We now define the basic state of the system as below

v ¼ vb ¼ 0; P ¼ Pb ¼ 0; P ¼ PbðzÞ; T ¼ TbðzÞ
¼ T0 � bz; ε ¼ εbðzÞ ¼ ε0ð1þ ebzÞ; E ¼ EbðzÞ

¼ E0bk
1þ ebz

; fbðzÞ ¼ �E0
eb

logð1þ ebzÞ; (11)

where b¼(T0�T1)/d, is the adverse temperature gradient,
E0 ¼ �f1ebz/log(1þebz), is the root mean square value of the
electric field at z¼ 0, bk is the unit vector in the direction of positive
z-axis and the subscript b denotes the quantity at basic state.

Let the initial state be slightly disturbed from the basic state,
then all the parameters describing the system will undergo
perturbation. We shall study the stability of the basic state by
introducing the following perturbations

v ¼ vb þ v0; P ¼ Pb þP0; P ¼ Pb þ P0; E ¼ Eb þ E0;
T ¼ Tb þ T 0; r ¼ rb þ r0; f ¼ fb þ f0; ε ¼ εb þ ε

0;

(12)

where v′¼(u,v,w),P′, P
0
, T

0
, E′, r

0
, f

0
and ε

0
are perturbations from the

base values in the corresponding quantities. Plugging (12) into
Equations (3)e(6) and (10), owing to the linear stability theory
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