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a b s t r a c t

An analytical expression for the streaming current in fractal porous media is developed based on the
capillary model and the fractal theory for porous media. The proposed fractal model is expressed as a
function of the space charge density at the solideliquid interface, the fluid flow rate, the DebyeeHuckel
parameter, the minimum and maximum pore/capillary radii and fractal dimensions for porous media.
The results are compared with available experimental data and good agreement is found between them.
In addition, factors influencing the streaming current in porous media are also analyzed.

© 2014 Elsevier B.V. All rights reserved.

Introduction

It is well known that most solid surfaces of natural and artificial
objects carry electrostatic charges, which will produce an electrical
surface potential such as in insulative pipes and porous media.
When a liquid with a very small number of ions flows through a
pipe or a porous medium, there is the current in the fluid. Rice and
Whitehead [1] derived an expression for the current (i) in a cylin-
drical capillary, i.e.
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where r is the capillary radius, rw is the space charge density at the
solideliquid interface, k is the DebyeeHuckel parameter, DP is the
pressure drop, L0 is the characteristic length or the length of the
straight line/capillary along the macroscopic pressure gradient in
the medium, E0 is the applied electric field, m and s are the viscosity
and conductivity of the fluid, I0 and I1 are the zero-order and first-
order modified Bessel functions, respectively. It can be seen that on

the right side of Eq. (1) the first term is the current due to transport
of charge by the fluid, and the second term is the conduction cur-
rent. If the capillary is tortuous and E0 ¼ 0, Eq. (1) is rewritten as
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In general, the radius r (its scale is micron) is far larger than the
thickness d0 (d0 ¼ k�1~2nm for water used in present work) of the
diffuse layer. Thus, kr >> 1, and then the function (1�2I1(kr)/
krI0(kr)) [1] from Eq. (2a) tends to 1. So Eq. (2a) can be simplified as

iðrÞ ¼ pDPrw
mLt

r2

k2
(2b)

with Lt the tortuous/real length. Lt follows the fractal scaling law
given by Ref. [2]

LtðrÞ ¼ ð2rÞ1�DtLDt

0 (3)

where Dt is the fractal dimension for tortuous capillaries with
1 < Dt < 2 in two dimensions and 1 < Dt < 3 in three dimensions.

In Eq. (2), i(r) is called the streaming current, which is an elec-
trokinetic phenomenon in many fields such as soil physics [3e7],
petroleum and electrical industries [8e10]. It has tremendously
caught the attention of a large number of researchers [11e20]. Paillat
et al. [13,15] performed a series of experiments and theoretical
analysis on the streaming current in porous media with different
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hydraulic radii. Thus, the hydraulic radius model for the total
streaming current through porous media can be expressed as [13],

Ih ¼ 8rwQh

ðkrhÞ2
(4a)

where Qh is the total flow rate through porous media, rh is the
hydraulic radius, and k is the DebyeeHuckel parameter and is given
by Ref. [13]

k ¼
ffiffiffiffiffiffiffiffi
s

εD0

r
(4b)

with D0 being the mean ion diffusion coefficient, and ε is the
permittivity of the liquid. In addition, Moreau et al. [16] measured
the streaming current in a glass pipe by a special equipment and
found that the intensity of streaming current depends mainly on
the space charge density at the wall and the electrical conductivity
of liquid. Wu et al. [20] studied the electrokinetic flow and electric
current in a fibrous porous medium constructed by an ordered
array of circular cylinders. Moreover, many scholars [14,18,19] have
theoretically investigated the streaming current in a cylindrical
pipe. Their theoretical analysis depends on Rice and Whitehead's
theory [1] and the hydraulic radius [21] for porousmedia. So far, the
fractal geometry theory and technique were rarely applied to
analyze the streaming current in porous media.

It has been shown that many natural porous media usually have
extremely complicated and disordered pore structure with pore
sizes extending over several orders of magnitude and their pore
spaces have the statistical self-similarity and fractal characters. The
fractal geometry [22,23] has successfully been employed to study
the transport properties in porous media. Yu et al. [2,24] proposed a
fractal model for permeability of porous media. Cai et al. [25,26]
proposed analytical expressions for predicting imbibition rate and
permeability of porous media. Xiao et al. [27,28] discussed the
thermal conductivity of nanofluids with Brownian motion effect
and permeabilities of fibrous gas diffusion layer in proton exchange
membrane fuel cells based on the fractal geometry, respectively. A
generalized modeling [29] of spontaneous imbibition was pre-
sented based on HagenePoiseuille flow in tortuous capillaries with
variably shaped apertures. In addition, Zhu et al. [30] used the
fractal theory to derive an analytical permeability of porous fibrous
media with consideration of electrokinetic phenomena. The model
is expressed as a function of porosity, dimensionless local averaging
net charge density and dimensionless electric resistance number.

The purpose of this paper is to apply the capillary tube model
and the fractal theory for porous media to derive an analytical
model for the streaming current of viscous flow through porous
media. In the next section, the fractal theory for porous media is
introduced briefly.

Fractal theory for porous media

It is assumed that a porous medium is comprised of a bundle of
tortuous capillaries with variable sizes. Furthermore, the cumula-
tive size-distribution of pores in porous media has been proven to
follow the fractal scaling law [2,31]:

N
�
� r
�
¼ ðrmax=rÞDf (5)

where N is the number of pores/capillaries, rmax is the maximum
radius of capillary, Df is the fractal dimension for pore space,
0 < Df < 2 in two-dimensional space and 0 < Df < 3 in three-
dimensional space. Usually, there are numerous capillaries in

porous media, Eq. (5) can be considered as continuous and differ-
entiable function. Thus, differentiating Eq. (5) with respect to r
yields

�dN ¼ Df r
Df
maxr

�ðDfþ1Þdr (6)

where �dN > 0. Eq. (6) represents the number of pores from the
radius r to the radius rþ dr. On the basis of Eq. (5), the total number
of pores/capillaries from the minimum radius rmin to the maximum
radius rmax can be obtained by,

Nt

�
� rmin

�
¼ ðrmax=rminÞDf (7)

Dividing Eq. (6) by Eq. (7) results in

�dN
Nt

¼ Df r
Df

minr
�ðDfþ1Þdr ¼ f ðrÞdr (8a)
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with f(r) the probability density function. According to the proba-
bility theory, the function f(r) should satisfy the following
normalization relationship:

Zrmax

rmin

f ðrÞdr ¼ 1�
�
rmin
rmax

�Df

¼ 1 (9)

As a result, Eq. (9) holds if and only if [31],

ðrmin=rmaxÞDf ¼ 0 (10)

Eq. (10) can be regarded as a criterionwhether the fractal theory
and technique can be used to analyze the fractal characters of
porous media. In general, rmin/rmax ~ 10�2 or <10�2 in porous me-
dia, and thus Eq. (10) holds approximately.

Eqs. (5)e(10) are the theoretical base of the present work.

Fractal model

The total flow rate

The flow rate through a single tortuous capillary is governed by
HagenePoiseuille equation [32],

qðrÞ ¼ pr4DP
8mLt

(11)

Based on Eqs. (3) and (6), the total flow rate Q through a unit
cell in a porous medium can be obtained by integrating Eq. (11)
from the minimum pore radius rmin to the maximum pore radius
rmax as [2]:

Q ¼
Zrmax

rmin

qðrÞð � dNÞ

¼ pDP

24� Dtm
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where a¼ rmin/rmax. Since 0 < Df < 2 and 1 < Dt < 3, a3�DfþDtz0. So
Eq. (12) is reduced to
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