
Discrete transformations in the Thomson Problem

Tim LaFave Jr. *

University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, United States

a r t i c l e i n f o

Article history:
Received 20 January 2013
Received in revised form
15 September 2013
Accepted 12 November 2013
Available online 21 November 2013

Keywords:
Electrostatics
Thomson Problem
Global optimization
Atomic structure

a b s t r a c t

A significantly lower upper limit to minimum energy solutions of the electrostatic Thomson Problem is
reported. A point charge is introduced to the origin of each N-charge solution. This raises the total energy
by N as an upper limit to each (N þ 1)-charge solution. Minimization of energy to U(N þ 1) is well fit with
�0:5518ð3=2Þ

ffiffiffiffi
N

p
þ 1=2 for up to N ¼ 500. The energy distribution due to this displacement exhibits

correspondences with shell-filling behavior in atomic systems. This work may aid development of more
efficient and innovative numerical search algorithms to obtain N-charge configurations having global
energy minima and yield new insights to atomic structure.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The Thomson Problem has drawn considerable interest since
the mid-1900s [1] having found use in modeling fullerenes [2,3],
drug encapsulants [4], spherical viruses [5], and crystalline order on
curved surfaces [6]. In the past few decades several computational
algorithms have yielded precise numerical solutions for many-N
electron systems [7e18]. The Thomson Problem has emerged as a
benchmark for global optimization algorithms [16,17] though its
general solution remains unknown [19].

Numerical solutions of the Thomson Problem are those for
which the total Coulomb repulsion energy,

UðNÞ ¼
XN
i<j

1��ri � rj
��; (1)

is a minimum for each N-charge systemwith ri and rj constrained to
the surface of a unit sphere.

The initial condition of some minimization algorithms is the
random distribution of N point charges on the unit sphere. This sets
a relatively distant upper energy limit, Ur(N) ¼ N(N � 1)/2 [8], from
which numerous iterations progress toward a global minimum for
each N-charge system. The distribution of numerical solutions has
been fit with empirical functions including U(N) ¼ N2/2 þ aN3/2 [7]

and U(N) ¼ N2/2 þ aN3/2 þ bN1/2 [8]. The quadratic term is ascribed
to energy stored within a continuous charged shell of unit radius
having total charge, N. With this interpretation, the half-integer
terms may correspond to self-energies of N uniformly charged
disks that are removed to yield the final minimized energy of
discrete charges. If the N2/2 term is associated with the random
distribution of point charges, the half-integer terms may be related
to correlation energies of surface Coulomb equilibrium states [7].
These ascriptions of energy terms to physical entities have guided
the development of fairly useful minimization algorithms.

Here, the discrete derivative of N2/2 is shown to correspond to
the introduction of a single point charge, q0, at the origin of a given
N-charge solution, and the discrete derivative of the remaining
half-integer term(s) accounts for energy needed to displace q0 to
the unit sphere. This yields each subsequent (N þ 1)-charge solu-
tion of the Thomson Problem. In this manner, the upper limit of
each minimized (N þ 1) energy solution is given by U(N) þ N. This
represents a well-defined charge configuration with a significantly
lower energy than random charge distributions and may be useful
as initial conditions in relatively more efficient energy minimiza-
tion algorithms.

Notably, the distribution of energy solutions of the Thomson
Problem is “systematic” [8] and not random. Here, having ignored
the linear term in the discrete derivative, the remaining “system-
atic” distribution of energy associated with the displacement of q0
to the surface of the unit sphere demonstrably exhibits features
uniquely correspondent with numerous shell-filling features
throughout the periodic table of natural atomic systems [20e22].
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Hence, introduction of q0 to the Thomson Problem represents an
intriguingly fresh perspective of this extensively useful mathe-
matical model and the classical underpinnings of atomic structure.

Numerical solutions of the Thomson Problem for up to 500
charges used in this communication have been obtained from a
continually updated database maintained by Syracuse University
[23].

2. Discrete derivatives

Two upper energy bounds of some interest are those associated
with a continuous charge shell [8] consisting of infinite-many N
charges such that

UNðNÞ ¼ N2

2
(2)

and the random distribution of N discrete point charges across the
surface of the unit sphere

UrðNÞ ¼ N
2
ðN � 1Þ ¼ N2

2
� N

2
: (3)

Plots of Eqs. (2) and (3) are shown in Fig. 1 together with a few
numerical solutions (open circles) of the Thomson Problem for
illustration.

The minimized global potential energy solutions for up to
N ¼ 65 point charges were previously fit using, [7]

f1ðNÞ ¼ N2

2
þ aN3=2 (4)

in which a ¼ �0.5510, and for up to N w 100 using [8]

f2ðNÞ ¼ N2

2
þ aN3=2 þ bN1=2: (5)

These smooth, continuous fit functions are generally unrepre-
sentative of the absolute minimum energy configurations of
discrete charges due to a variety of issues. Among them, discrete
charges cannot be infinitesimally subdivided so all points, f(N), for
non-integer N have no physical significance without imposing
additional arguments. If these intermediate values of f(N) should
have physical usefulness, for instance if an effective fractional
charge on the unit sphere surface is admitted as a discrete charge

approaches or leaves the surface, f(N) should have local minima at
integer values of N. Though these fit functions, Eqs. (4) and (5) have
no local minima at integer values of N, they are coarsely instructive.

It is potentially more fruitful to design a fit function in accor-
dance with the physical nature of electrostatic charge configura-
tions. In particular, knowledge of f(N) at integer values of N, given
the discrete nature of point charges is paramount. Consider the
discrete derivative of f(N) at integer values of N,

DfiðNÞ
DN

¼ f ðN þ DNÞ � f ðNÞ
DN

(6)

of Eq. (4), which yields, after binomial expansion of the half-integer
term,

Df1ðNÞ ¼
�
N þ 1

2

�
þ a
2

�
3N

1
2 þ 3

4
N�1

2 � 1
8
N�3

2 þ/

�
(7)

for DN ¼ 1. For comparison, the derivative of Eq. (5), with binomial
expansion of the half-integer terms,

Df2ðNÞ ¼
�
Nþ1

2

�
þ1
2

�
3aN

1
2þ7

4
ðaþbÞN�1

2þ1
8
ða�bÞN�3

2þ/

�

(8)

for DN ¼ 1. The first set of parentheses in Eqs. (7) and (8) is the
discrete derivative of N2/2, the energy of a continuous charge shell,
Eq. (2).

3. Discrete transformation energies

To understand the physical charge distribution represented by
the discrete energy differences, Eqs. (7) and (8), consider an N-
charge solution, such as that of [N] shown in Fig. 2 for which the
total minimized electrostatic energy is U(N) as shown in Fig. 1. The
discrete energy changes needed to obtain the solution U(N þ 1) in
Fig. 1 may be obtained by introducing an (N þ 1)th point charge, q0,
to the origin denoted [Nþ] in Fig. 2. Its contribution to the total
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Fig. 1. The extreme upper energy limit of the Thomson Problem is given by N2/2 for a
continuous charge shell followed by N(N � 1)/2, the energy associated with a random
distribution of N point charges. Significantly lower, U(Nþ), the energy of a given N-
charge solution of the Thomson Problem with one charge at its origin is readily ob-
tained by U(N) þ N, where U(N) are solutions of the Thomson Problem.
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Fig. 2. A well-defined intermediate charge configuration, [Nþ], with q0 at the origin of
[N] linearly increases the energy by N. Consequently, U(Nþ) is readily accessible.
Displacement of q0 to the unit sphere surface and global minimization of energy yields
the new [Nþ1] solution with DUþðN þ 1Þf ffiffiffiffi
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