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a b s t r a c t

In this article, Electrohydrodynamic flow (EHD flow) in a circular cylindrical conduit is studied by a semi-
exact and high efficient weighted residual method called Least Square Method (LSM). A principle of LSM
is briefly introduced and later is employed to solve the described problem. Furthermore, the effects of the
Hartmann electric number (Ha) and the strength of nonlinearity (a) on velocity profiles are discussed and
presented graphically. Results are compared with numerical solution and obtained residuals are
compared with those of HAM which previously were done by Mastroberardino in Ref. [3]. Outcomes
reveal that LSM has an excellent agreement with numerical solution; also depicted residual functions
showed that LSM is more acceptable than HAM especially for large values of Ha and a numbers, also it is
simpler and needs fewer computations.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The electrohydrodynamic flow (EHD flow) of a fluid in an “ion
drag” configuration in a circular cylindrical conduit (see Fig. 1) is
governed by a nonlinear second-order ordinary differential equa-
tion [1e3]:
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þ 1
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dr
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�
¼ 0; 0 < r < 1: (1)

subject to the boundary conditions

dw
dr

����
r¼0

¼ 0; wð1Þ ¼ 0: (2)

where w(r) is the fluid velocity, r is the radial distance from the
center of the cylindrical conduit, Ha is the Hartmann electric
number, and the parameter a is a measure of the strength of the
nonlinearity. It has been noted that the nonlinearity confronted in
this problem is in the form of a rational function, and thus, poses a
significant challenge in regard to obtaining analytical solutions.

Despite this fact, some analytical solutions are presented by re-
searchers which following are introduced.

In 1997, McKee et al. [1] developed perturbation solutions in
terms of the parameter a governing a nonlinear problem. McKee
and his coworkers used a GausseNewton finite-difference solver
combined with the continuation method and RungeeKutta shoot-
ingmethod to provide numerical results for the fluid velocity over a
large range of values of a. This was done for both large and small
values of a. In 1997, Paullet [2] proved the existence and uniqueness
of a solution of BVP of electrohydrodynamic flow and in addition,
he claimed an error in the perturbation and numerical solutions
given by McKee [1] for large values of a. Recently Mastroberardino
[3] presented the approximate solution by homotopy analysis
method [4e7] (HAM) for the nonlinear BVP governed by electro-
hydrodynamic flow of a fluid in a circular cylindrical conduit for
a ∊ (0,1). He showed that HAM solutions are quite accurate espe-
cially for lower values of the parameters a and H2, but the accuracy
decreases rather fast for higher values of these parameters. Khan
et al. [8] introduced new homotopy perturbation method [9e13]
and Pandey et al. [14] presented two semi-analytic algorithms to
solve this equation for various values of relevant parameters based
on optimal homotopy asymptotic method (OHAM) and optimal
homotopy analysis method.

There are some simple and accurate analytical techniques for
solving differential equations called the Weighted Residuals
Methods (WRMs). Collocation, Galerkin and Least Square are
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examples of the WRMs. Stern and Rasmussen [15] used collocation
method for solving a third order linear differential equation. Vaferi
et al. [16] have studied the feasibility of applying of Orthogonal
Collocation method to solve diffusivity equation in the radial
transient flow system. Hendi and Albugami [17] used Collocation
and Galerkin methods for solving FredholmeVolterra integral
equation. Recently Least Square Method is introduced by Aziz and
Bouaziz [18] and is applied for a predicting the performance of a
longitudinal fin [19]. They found that least squares method is
simple compared with other analytical methods. Shaoqin and
Huoyuan [20] developed and analyzed least-squares approxima-
tions for the incompressible magneto-hydrodynamic equations.

According to the above explanations, we motivated to find a
semi-exact analytical solution for electrohydrodynamic flow in
which all a values (especially for a >> 1) have a good agreement
with numerical solution, so Least Square Method (LSM) is intro-
duced. For large a values, LSM results are qualitatively similar with
Paullet’s solutions. Despite of simplicity of this method, it has lower
residuals compared with HAMwhich presented in Ref. [3] for wide
range of a andHa numbers. Also, the effects of a andHa numbers on
velocity profile are discussed and treatment of the velocity profile
near the centerline and walls is discussed in the present work.

2. Least Square Method (LSM)

There existed an approximation technique for solving differential
equations called the Least Square Method (LSM). Suppose a differ-
ential operator D is acted on a function u to produce a function p:

DðuðxÞÞ ¼ pðxÞ (3)

It is considered that u is approximated by a function ~u, which is a
linear combination of basic functions chosen from a linearly inde-
pendent set. That is,

uy~u ¼
Xn
i¼1

ci4i (4)

Now, when substituted into the differential operator, D, the
result of the operations generally isn’t p(x). Hence an error or re-
sidual will exist:

RðxÞ ¼ Dð~uðxÞÞ � pðxÞs0 (5)

The notion in LSM is to force the residual to zero in some average
sense over the domain. That is:
Z

X

RðxÞWiðxÞ ¼ 0 i ¼ 1;2;.;n (6)

where the number of weight functions Wi is exactly equal the
number of unknown constants ci in ~u. The result is a set of n alge-
braic equations for the unknown constants ci. If the continuous

summation of all the squared residuals is minimized, the rationale
behind the LSM’s name can be seen. In other words, a minimum of

S ¼
Z

X

RðxÞRðxÞdx ¼
Z

X

R2ðxÞdx (7)

In order to achieve a minimum of this scalar function, the de-
rivatives of S with respect to all the unknown parameters must be
zero. That is,

vS
vci

¼ 2
Z

X

RðxÞ vR
vci

dx ¼ 0 (8)

Comparing with Eq. (6), the weight functions are seen to be

Wi ¼ 2
vR
vci

(9)

However, the “2” coefficient can be dropped, since it cancels out
in the equation. Therefore the weight functions for the Least
SquaresMethod are just the derivatives of the residual with respect
to the unknown constants

Wi ¼
vR
vci

(10)

3. Application of LSM on EHD flow analysis

Because trial function must satisfy the boundary conditions in
Eq. (2), so it will be considered as,

wðrÞ ¼ c1
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(11)

In this problem, according to the Eq. (5), residual functionwill be
as,

RðrÞ ¼ r
�
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(12)

Fig. 1. Schematic of the EHD flow in a circular cylindrical conduit.

Table 1
Coefficients (A, B, C, D and E) for Eq. (14) in different Ha and a numbers.

Coefficient Ha2 ¼ 0.5 Ha2 ¼ 4

a ¼ 0.5 a ¼ 4 a ¼ 0.5 a ¼ 4

A 0.1137465 0.1087386 0.497918 0.212637
B �0.109954 �0.1006484 �0.348699 �0.511836
C 0.0001223 �0.0005611 0.0375124 1.756696
D �0.0040636 �0.0106654 �0.191238 �2.071364
E 0.0001491 0.0031363 0.004506 0.613867
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