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Abstract

In this paper, a temporal linear stability analysis is performed of a coaxial jet composed of two immiscible liquids inside a coaxial

electrode. This analysis is carried out to investigate the case of an inner driving coaxial electrospray system. The assumption is made that

the inner liquid has high electric conductivity, and the outer liquid is an insulating dielectric. The dimensionless dispersion equation for

both the axisymmetric and non-axisymmetric modes is derived and solved numerically for the axisymmetric case. The effects of the

relevant dimensionless parameters on the instability of the jet are discussed in detail. These parameters include the dimensionless

electrostatic force E, the dielectric constant ratio e, the diameter ratios a and b, the velocity ratio L, the density ratio S, the Weber

number, and the interface tension ratio z. Two independent unstable modes, modes 1 and 2, are found and analyzed. Among the various

parameters, the dimensionless electrostatic force and the dielectric constant have a similar and remarkable influence on modes 1 and 2,

altering drastically the regime of the jet as they vary. The interface tension on the outer interface promotes the instability of both modes 1

and 2 in the region of long wavelengths while suppressing the growth rate in the region characterized by short wavelengths. The interface

tension on the inner interface, however, promotes instability of only mode 2 in the same way. The diameter ratio a has a great effect on

mode 2 while a negligible influence on mode 1. And the diameter ratio b has a slight effect on both the unstable modes.
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1. Introduction

Coaxial electrospray is a new, effective method of
forming micro and nano capsules. It can be used in the
drug industry, for injecting food additives, in paper
manufacturing, and other industries as well. Recently,
much experimental research has been performed to find an
electrospray method for generating compound droplets [1].
Other research has focused on finding appropriate scaling
laws between electric current and drop size for the cases of
both outer driving and inner driving [2], as well as the
different modes of the coaxial jet electrospray obtained for
the outer driving case [3]. Until now, however, there has
been little research dealing with theoretical and numerical
modeling of this phenomenon. Particularly lacking has

been any instability analyses of electrospray in the coaxial
case.
As to the stability analysis of single-liquid electrospray,

various results have been reported, including the effects of
a wide range of parameters on the instability of the jet [4],
the temporal linear stability of conductive and dielectric
jets in both radial and axial electric fields [5], [6], the
temporal linear stability analysis of a cylindrical electrified
jet flowing at high velocity inside a coaxial electrode [7], the
absolute and convective instabilities of a cylindrical
electrified jet in a radial electric field [8], a nonlinear
electro-hydrodynamic stability of a finite conducting jet in
an axial electric field [9], and the stability of conducting
viscosity jets in radial ac electric fields [10].
In a previous paper [11], we investigated the linear

stability of an electrified coaxial jet with the outer liquid
driven. In this paper, we attempt to explain the breakup of
the electrified coaxial jet for the case where the inner liquid
is driven. Specifically we utilize the method of temporal
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linear instability analysis. For the purpose of analysis, the
two liquids and the ambient gas are assumed to be
incompressible Newtonian fluids. The viscosities of all
fluids are neglected, and the motion is assumed to be
irrotational. The effects of gravity and magnetic fields are
also neglected. The outer liquid and the gaseous phase are
assumed to be perfect dielectrics; while inner liquid is
conducting and obeys Ohm’s law. Both conductivity and
dielectric properties of all liquids are assumed constant
over time. The dielectric relaxation time of the system is
assumed so small that all free charges distribute on the
liquid–liquid interface, achieving an equilibrium state,
essentially instantaneously for both unperturbed and
perturbed cases.

2. Theoretical Analysis

The coaxial jet considered in this paper consists of a
cylindrical inner liquid jet of radius R1, velocity U1, and
density r, and a coflowing outer liquid jet of radius R2,
velocity U2, and density r2. The background gas in the
unperturbed case is stationary. An electric potential V0,
applied between the central axis anode and the earthed
outer cylindrical cathode of radius R3, is kept constant
(Fig. 1). Hereafter in this paper, the subscripts 1, 2 and 3
shall denote the inner liquid, outer liquid, and background
gaseous phase, respectively, when they are used to describe
bulk physical quantities. These same subscripts will denote
the inner liquid–liquid interface, the outer gas–liquid
interface, and the cylindrical electrode, respectively, when
used to describe interface or boundary physical quantities.

The viscosities of fluids are not considered, hence all
shear forces at the liquid–liquid and gas-liquid interfaces
disappear from the equations, and the basic flow velocities
are allowed to sustain discontinuities at the various
interfaces. In cylindrical coordinates (r,y,z) , the basic
velocity profiles are assumed to be

~U1ðr; y; zÞ ¼ U1ð0; 0; 1Þ,

~U2ðr; y; zÞ ¼ U2ð0; 0; 1Þ,

~U3ðr; y; zÞ ¼ 0.

Because the entire inner jet of conducting liquid is
equipotential, the potential and the electric-field intensity
of the inner liquid become

V1ðr; y; zÞ ¼ V0; ~E1 ¼ �rV 1 ¼ 0.

The outer annular liquid jet and the background gaseous
phase are both considered as dielectrics, and hence the
electric fields inside them cannot be neglected. The
potential and electric field intensity in the unperturbed
case can be obtained via the usual electrostatic laws:

V2 ¼ V0
lnðr=R1Þ

lnA
þ 1

� �
; ~E2 ¼ �

V0~r0
r lnA

; R1 � r � R2,

V3 ¼
e2
e3
�

V0lnðr=R3Þ

lnA
; ~E3 ¼ �

e2
e3
�

V 0~r0
r lnA

; R2 � r � R3,

where ~r0 is the unit vector of the r- direction, and A ¼

ðR2=R3Þ
e2=e3=ðR2=R1Þ.

During the process of linear stability analysis, we shall
maintain the small amplitude disturbance assumption
throughout. The interfaces being perturbed consist of the
following:

rsi ¼ Ri þ Zi; i ¼ 1; 2,

where Zi is the displacement of the interface from the
unperturbed case.
The perturbed pressure field can be expressed as

p ¼ p0+p0. When the electric field is perturbed, it will still
be assumed that V 1ðr; y; zÞ ¼ V0; and ~E1 ¼ �rV 1 ¼ 0.
The potential and the electric-field intensity in the outer
liquid and in the gaseous phase will be written as
Vi ¼ V 0i þ V 0i; ~Ei ¼ ~E0i þ ~E

0

ii, where subscript 0 denotes
the unperturbed properties, and the ‘prime’ superscript
denotes the perturbation of the corresponding quantity. In
the normal mode method of temporal linear instability
analysis, the wave-number k is real, and the frequency o is
complex function of k: oðkÞ ¼ orðkÞ þ ioiðkÞ: Hence the
perturbation can be decomposed into the form of a Fourier
exponential:

ðZi;~u
0
i; p
0
i;V
0
iÞ ¼ ðẐiðrÞ; ~̂uiðrÞ; p̂iðrÞ; V̂ iðrÞÞe

otþiðkzþnyÞ, (1)

where Ẑi,~̂ui,p̂i,V̂ i are the perturbation amplitudes of the
interface, velocity, pressure and electrical potential, respec-
tively, and n is the azimuthal wave number.
Substituting (1) into the linearized, small perturbation

equations for an inviscid fluid, we obtain a modified Bessel
equation of order n for the amplitude function p̂iðrÞ:

d2p̂i

dr2
þ

1

r

dp̂i

dr
� k2

þ
n2

r2

� �
p̂i ¼ 0. (2)

At the same time, from Maxwell’s equations applied to
electro-hydrodynamics, we can obtain a modified Bessel
equation of order n for the electrical potential perturbation
amplitude V̂ iðrÞ:

d2V̂ i

dr2
þ

1

r

dV̂ i

dr
� k2

þ
n2

r2

� �
V̂ i ¼ 0. (3)
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Fig. 1. Diagram of the model showing relevant coordinates and

dimensions.
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