Journal of Electrostatics 72 (2014) 422-427

Contents lists available at ScienceDirect

Journal of Electrostatics

journal homepage: www.elsevier.com/locate/elstat

# Electrostatic field calculation in air gaps with a transverse layer of dielectric barrier

### M. Talaat

Electrical Power & Machines Department, Faculty of Engineering, Zagazig University, P.O. 44519, Zagazig, Egypt

#### ARTICLE INFO

Article history: Received 22 February 2014 Received in revised form 27 June 2014 Accepted 11 July 2014 Available online 25 July 2014

Keywords: Electrostatic calculation Transverse dielectric barrier Air gap Hyperbolic needle-to-plane gap Charge simulation method Method of image Genetic algorithms

#### ABSTRACT

In this paper the influence of transverse layer of dielectric barrier to the electrostatic field strength of air gaps using a hyperbolic needle-to-plane configuration is investigated. A three dimensional field problem is presented for simulating the electrostatic field in the air gap. This is achieved by using the charge simulation method. Group of ring charges are used to simulate the needle surface. A genetic algorithm is used for optimum number, location, dimension and value of simulating ring charges. The used needle tip radius was 8  $\mu$ m while the gap spacing varied from 0.3 cm to 50 cm. The optimum barrier position minimizes the maximum electrostatic field and the electric energy density at the needle tip and consequently maximizes the required breakdown value. The simulation result has been compared with available experimental observations. A good agreement is found between the numerical and experimental data.

doubled [10].

© 2014 Elsevier B.V. All rights reserved.

#### 1. Introduction

The electric field analysis is very important due to its role in the dielectrics and conducting medium; streamer and fluid flow in electrolytic solutions [1], breakdown and induced electric field in gases [2,3], treeing in solids [4,5], and the design of high voltage insulation [6]. In some electrode geometries, the electric fields can simply be expressed analytically [1]; in other, the electric field problem is complex because of the sophisticated boundary conditions [3], including media with different permittivities such as composite materials [7,8].

The barrier effect to the dielectric behavior of air gaps under high stress has been investigated [8-12]. Also, all the experimental setups differ not only in the dimensions, material of the barrier but also in the gap geometry.

Barriers materials are used in high voltage insulations to slowdown the electric field strength [10,11]. Barriers material, their dimensions and dielectric strength are the main factors used for selection of the best barrier to prolong the breakdown voltage lifetime. electrical phenomena, especially in the composite dielectrics and conducting medium. Numerical methods, such as finite element method (FEM) [1,6,7], charge simulation method (CSM) [2–4], and integral equation methods have been used to simulate the non-uniform electric fields. Charge simulation method (CSM) is one of the most successful numerical methods for solving electrostatic field problems [2–4,13,14]. This paper presented a new simulation model for the electrostatic field strength in air gaps with a transverse layer of dielectric barrier by using a hyperbolic needle-to-plane gap. The analysis of electrostatic field is a pre-requisite for determining the field dis

The barrier optimum location is near the needle tip. This optimum location makes the voltage required for the breakdown is

The calculation of electrostatic fields requires the solution of

Poisson's and Laplace's equations. Several numerical techniques

have been used for solving Laplace's and Poisson's equations be-

tween complex electrode arrangements [1–4]. The simulation of

non-uniform electric field is a pre-requisite for understanding of

static field strength in air gaps with a transverse layer of dielectric barrier by using a hyperbolic needle-to-plane gap. The analysis of electrostatic field is a pre-requisite for determining the field distribution along the air gap and the effect of the transverse barrier. This is achieved by using charge simulation method (CSM). Ring charges are used to simulate the needle electrode. The optimum locations, values and numbers of these ring charges are achieved by using optimization technique "genetic algorithms (GAs)" [3,15,16].





ELECTROSTATICS

E-mail addresses: m\_mtalaat@eng.zu.edu.eg, m\_mtalaat@yahoo.com.

The needle tip radius has been chosen to be 8  $\mu$ m with gap spacing varied from 0.3 cm to 50 cm which is appropriate for the available experimental data.

#### 2. Method of analysis

#### 2.1. Electrostatic field calculation

The published results concern the electric field distribution as well as the shape of the insulating sheet. Barriers insulating materials were used like Bakelite, Pyrex Glass, Kraft paper and hard paperboard. The hyperbolic needle-to-plane arrangement is the more common gap used for high field investigation (Fig. 1). Most of researchers performed experiments on small or medium gaps up to 50 cm.

The interface between two dielectric materials is determined by a charge density  $\rho_{\rm S}$  that is given by the formula [17]:

$$\rho_{\rm S} = \varepsilon_0 \left( \varepsilon_{\rm r2} - \varepsilon_{\rm r1} \frac{\sigma_2}{\sigma_1} \right) E_2 = \varepsilon_0 \left( -\varepsilon_{\rm r1} + \varepsilon_{\rm r2} \frac{\sigma_1}{\sigma_2} \right) E_1 \tag{1}$$

where  $\varepsilon_0$  is the permittivity of free space,  $E_1$ ,  $E_2$  are the electrostatic field inside the two materials forming the interface,  $\varepsilon_{r1}$ ,  $\varepsilon_{r2}$  are the relative permittivities of the same materials and  $\sigma_1$  and  $\sigma_2$  are the conductivities of them.

The local electric field,  $E_{\rm i}$ , as a function of the applied electric field,  $E_{\rm a}$ , and the internal field,  $E_{\rm in}$ , due to space charge accumulation in the first interface between the two dielectrics:

$$E_{\rm l} = E_{\rm a} - E_{\rm in}(t)$$

$$E_{\rm l} = \frac{V}{x} - E_{\rm in}(t)$$
(2)

where *V* is the applied voltage, *x* is the electrode spacing. The internal field  $E_{in}$  due to the accumulated charge trapped with a sufficient time in the upper interface between air and barrier dielectric



**Fig. 1.** Schematic diagram of the hyperbolic needle-to-plane air gap with a transverse barrier specimen. The barrier location is defined by the parameter  $\xi = y/x$ .

materials can be calculated by assuming that the charge is a disk with charge density  $\rho_S$  and radius  $R_{disk}$  given by [18]:

$$E_{\rm disk} = \frac{\rho_{\rm S}}{2\varepsilon_o \varepsilon_{\rm r1}} \left( 1 - \frac{z}{\sqrt{\left(R_{\rm disk}^2 + z^2\right)}} \right)$$
(3)

This equation gives the value of the normal electrostatic field of the charged disk in the *z*-axis. So the internal field in the needle tip is equal to:

$$E_{\rm in} = \frac{\rho_{\rm S}}{2\varepsilon_o \varepsilon_{\rm r1}} \left( 1 - \frac{y}{\sqrt{\left(R_{\rm disk}^2 + y^2\right)}} \right) (1 - \xi) \tag{4}$$

where *y* is the vertical distance between the needle tip and the upper barrier surface and  $\xi = y/x$  is the interface location in the specimen, see Fig. 1. The electrostatic field at the needle tip,  $E_{tip}$ , in the absence of space charge, which satisfy Laplace's equation, is obtained from the simulation program using CSM at the tip of the needle (maximum value of electrostatic field).

So, the local electrostatic field is given by:

$$E_{\rm l} = E_{\rm tip} - E_{\rm in}$$

or:

$$E_{\rm l} = E_{\rm tip} - \frac{\rho_{\rm S}}{2\varepsilon_o \varepsilon_{\rm r1}} \left( 1 - \frac{y}{\sqrt{\left(R_{\rm disk}^2 + y^2\right)}} \right) (1 - \xi)$$
(5)

Assume that  $R_{disk}^2 \gg y^2$ , then:

$$E_{\rm l} = E_{\rm tip} - \frac{\rho_{\rm S}}{2\varepsilon_o \varepsilon_{\rm r1}} (1 - \xi) \tag{6}$$

Substituting Eq. (1) into Eq. (6) becomes:

$$E_{\rm l} = E_{\rm tip} - \left(\varepsilon_{\rm r2} \frac{\sigma_1}{\sigma_2} - \varepsilon_{\rm r1}\right) E_1 \frac{(1-\xi)}{2\varepsilon_{\rm r1}} \tag{7}$$

The value of  $E_1$  is obtained also from the simulation program using CSM but at different values of *y* measured from the tip of the needle to the barrier upper surface.

The ratio of  $E_l/E_1$  is given by:

$$\frac{E_{\rm l}}{E_{\rm 1}} = \frac{E_{\rm tip}}{E_{\rm 1}} - \left(\frac{\varepsilon_{\rm f2}}{\varepsilon_{\rm r1}} \frac{\sigma_{\rm 1}}{\sigma_{\rm 2}} - 1\right) \frac{(1-\xi)}{2} \tag{8}$$

Considering the fact that the value of electrical breakdown field at the needle tip strongly depends of the energy density  $W_S$  of the local electrostatic field and since the former quantity is proportional to the square of the local electric field

 $W_{\rm S}=rac{1}{2}\,\varepsilon E_{\rm l}^2$ 

So a quadratic relation between  $W_S$  and  $\xi$  is expected.

#### 2.2. Needle simulation

The estimation of  $E_{tip}$  and  $E_1$  calls at first for accurate computation of the electric field in the air gap. This is achieved using CSM which satisfy Laplace's [2–4]. Group of ring charges are used to

Download English Version:

## https://daneshyari.com/en/article/726505

Download Persian Version:

https://daneshyari.com/article/726505

Daneshyari.com