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a b s t r a c t

PoissoneBoltzmann equation (PBE) is widely used in the context of deriving the electrostatic energy of
macromolecular systems and assemblies in aqueous salt solution. Macromolecules and their ion pene-
trability with the presence of stern layer have been discussed theoretically and analytically. While
numerous numerical solvers for the 3D PBE have been developed, the integral equation formulation for
the boundary treatments used in these methods has only been loosely addressed, especially in the ion
exclusion stern layer. The de facto standard in current linear PBE implementations is to estimate the
potential at the outer boundaries using the (linear) Debye-Hückel (DH) approximation. However, as
assessment of how these outer boundary treatments affect the overall solution accuracy in the stern layer
does not appear to have been previously made. As will be demonstrated here, this DH approximation can
under certain conditions, produce completely erroneous estimates of the potential and energy salt
dependencies. In this work, the sets of boundary conditions are invoked that take into account the
impenetrability of the ions to the macromolecule. Using surface integral equation, this new treatment is
able to give an accurate description of the electrostatic potential distribution, electrostatic solvation free
energy etc. not only in a macromolecular system by means of continuum model but also focus on physics
of the ion impenetrable stern layer. The accuracy of the results obtained by using the boundary element
method (BEM) is tested by comparison with analytical TanfordeKirkwood results for a model spherical
solute system. Finally, the author also examined how the general ion exclusion layers would tend to
increase the surface electrostatic potential under physiological salt conditions. To facilitate presentation
and computational domain, attention is restricted here to the 3D spherically symmetric linear PBE.
Though geometrically limited, the modeling principles nevertheless extend to general linear PBE solvers.
The 3D linear PBE model can also be used to benchmark and validate the salt effect prediction capa-
bilities of existing PBE solvers. This choice promises to be particularly useful in the context of biological
applications, where the solvation energy, arising from medium polarization, has a prime role.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Electrostatic interactions are important factors in determining
the native structures of both proteins and nucleic acids as well as
their complexes with low-molecular-weight drugs [1,2,3]. The
longrange nature of electrostatic interactions, even in aqueous
solution, is one reason why their theoretical treatment is difficult.
In order to circumvent the considerable and often prohibitive
computational expense of microscopic (explicit) solvent models
which, in principle, afford an exact treatment of electrostatic
interactions in solution, there has been much renewed interest in
the use of simpler continuum models [1e9]. In one class of

continuum models [5e9] the explicit structural features of the
solvent are replaced by a linear high dielectric constant continuum
surrounding the solute, which is modeled as a low dielectric
constant charge-containing cavity. For ionic solutions, the ion
distribution is modeled as a mean field, determined from statistical
mechanics according to a Boltzmann distribution. The solute charge
distribution and, at nonzero ionic strength, the mobile ion distri-
bution polarize the solvent, giving rise to a solvent reaction
potential. The calculation of the polarization of the solvent is
carried out by solving the Poisson equation or, when ionic strength
effects are to be included, by solving the more general Pois-
soneBoltzmann (PB) equation.

The interaction of the solvent reaction potential with the solute
charge distribution determines the free energy of solvation of the
system. Although very simple, such continuum models have been
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useful for making predictions concerning electrostatic effects in
proteins [10e13] which show reasonable agreement with exper-
imental observations. A set of very elegant calculations has
recently shown that continuum models reproduce solute-solvent
free energies obtained by using a microscopic treatment of the
solvent [37]. It is likely that the success of such continuummodels
is in part due to cancellation effects in the behavior of water at the
molecular level [14,15]. The use of such continuum models is
especially suitable for aqueous systems because of the unique
behavior of the local dielectric constant in the region of the
dielectric boundary. At the boundary, the dielectric constant varies
very rapidly over a microscopic distance to the value of the
dielectric constant for bulk water. This is consistent with the
assumption in the continuum model that there are only two
(discontinuous) dielectrics separated by a molecular interface. In
addition, calculations of the potential of mean force between ions
in aqueous solution using integral equation theories [16] have
shown that water completely screens vacuum Coulombic inter-
actions within one hydration shell.

Such behavior is well represented by simple continuummodels.
Analytical solutions of the PB equation can be obtained for only
a very few, simple cavity shapes. Hence, in order to study macro-
molecular systems in aqueous ionic solution using cavity-based
continuum models, efficient methods for obtaining approximate
numerical solutions to the PB equation have been developed,
although some drawbacks remain with each method. There are
broadly two different approaches in seeking approximate numer-
ical solutions of the PB equation. One such approach is the finite-
difference (FD) method, first used to study bio-macromolecular
systems by Warwicker and Watson [5], with several very impor-
tant algorithmic advances being added later by Gilson et al. [6] and
Nicholls and Honig [18]. The finite-difference method is very
general and has been used to obtain solutions of the full nonlinear
PoissoneBoltzmann (NLPB) equation [19]. In this method, the
solute and solvent are mapped onto a cubic lattice. Each of the
small cubes defining the lattice is assigned an appropriate value of
the charge density, dielectric constant, and ionic strength param-
eters that appear in the PB equation. The method of finite-
differences is then used to obtain the electrostatic potential over
the entire grid iteratively. This technique involves N3 variables (the
total number of lattice sites), where N is the number of points per
edge of the lattice. There are some difficulties encountered when
using finite-difference techniques. One concerns the necessary
choice of boundary conditions. These can be obtained at sufficiently
large distance with respect to the dielectric boundary from either
Coulomb’s law or Debye-Hückel theory. To achieve a high degree of
accuracy, it is necessary to consider the continuum solvent that is
far from the solute; this entails increasing the lattice size (relative
to themolecule) and hence the expense of the calculation. A second
problem associated with the finite-difference technique arises
because of the necessity to map the molecular charge distribution
onto lattice points. The resulting error arising from this disturbance
of the optimal charge distribution is a function of the lattice spacing
(although it is in general small); however, when the molecular
charge distribution is approximated by a set of distributed multi-
ples, it is likely that mapping onto the lattice would have to be
achieved by use of a limiting monopole distribution. Faerman and
Price [20] have recently demonstrated the utility of using such
a distributed multipole description to obtain very accurate
descriptions of the electrostatic field/potential at the molecular
surface, for peptide molecules, a prerequisite for the success of
electrostatic continuum solvent models. An alternative approach
for obtaining solutions of the Poisson equation is the boundary
element method, first developed for macromolecules by Zauhar
and Morgan [21], with different algorithmic improvements

proposed by Rashin and Namboodiri [9] and Zauhar and Morgan
[21,22,59].

The key feature of the boundary element method is the reduc-
tion of the problem to the solution of an integral equation over
a two-dimensional surface. The polarization of the solvent by the
solute induces a field throughout the volume of the surrounding
dielectric medium. Calculation of the polarization field is equiva-
lent to the calculation of induced polarization charge density at the
dielectric boundary [7,23].

The boundary element method is a function of S independent
variables, where S is the number of elements covering the two-
dimensional surface, which serves as the dielectric interface.
There is no requirement to displace atomic charge distributions
when using this method, and in general the method allows for
a more accurate description of the molecular surface than the
finite-difference method. The boundary element method has thus
far been used to calculate the total electrostatic potential and the
associated electrostatic component of the free energy of solvation
[7,9]. Rashin [24] has described a combined iterative boundary
element method to obtain solutions of the general PB equation, but
has not presented details for carrying out accurate volume inte-
grations, or about the convergence properties of the scheme. The
inclusion of ionic strength effects in continuum models is often
achieved by using a linearized version of the PoissoneBoltzmann
equation [1,17,25,26]. Unlike the full nonlinear version, the linear
PoissoneBoltzmann (LPB) equation is formally correct in the limit
of low ionic strength and can be derived within a statistical
mechanical framework from a partition function [26]. However, use
of the LPB equation is unlikely to be suitable for all investigations
concerning macromolecular structure. This is because, even at low
ionic strength, the main condition for linearization, i.e., .qif(r)/
kT << 1.(where f(r) is the electrostatic potential, qi is the ion
charge, T is temperature, and k is the Boltzmann constant), appears
to break down at room temperature in aqueous solution if the
distance between an ion and an exposed polar atom is smaller than
5 Å, according to our calculations. The ion charge density predicted
by the LPB equation is generally too low and leads to incorrect
estimations of ion screening between charged atoms. A detailed
discussion concerning the validity of the NLPB equation, as well as
derivations of various forms of the associated total electrostatic
energy, has been given recently by Sharp and Honig [27].

The purpose of the present paper is to develop a procedure to
obtain solutions to the NLPB equation within the framework of
the previously described boundary element method. The under-
lying physical basis of our method is our observation that, at
relatively low ionic strength (�1 M), the distribution of mobile
ions around the solute molecule is determined primarily by the
potential due to the solute charge distribution and the reaction
solvent potential (viz. the potential due to the surface charges
obtained in the boundary element method). This makes possible
the calculation of the mobile ion distribution around the molecule
in a way that the polarization of the solvent by the solute charge
distribution is calculated by using a boundary element method.
The accuracy of the results obtained by using the boundary
element method (BEM) is tested by comparison with analytical
TanfordeKirkwood results for a model spherical solute system.
Finally, the author also consider how the general ion exclusion
layers tend to increase the surface electrostatic potential under
physiological salt conditions. To facilitate presentation and
computational domain, attention is restricted here to the 3D
spherically symmetric linear PBE. Though geometrically limited,
the modeling principles nevertheless extend to general linear PBE
solvers. The 3D linear PBE model can also be used to benchmark
and validate the salt effect prediction capabilities of existing PBE
solvers.
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