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a b s t r a c t

A new approach to evaluation of binary test results when checking a one-dimensional abil-
ity is proposed. We consider the case where a qualitatively homogeneous population of
objects is tested by a set of non-destructive test items having different, but unknown
beforehand levels of difficulty, and we need to evaluate/compare both the intrinsic abilities
of these objects and the level of difficulty of the test items. We assume that the responses
to different test items, applied to the same part, do not affect one another and the same
scale invariant item response model applies to all members of the tested population of
objects under test (OUTs). OUT can mean an electronic component, examinee, program
unit or material under test, etc. An algorithm for solving the problem, applicable for engi-
neering testing, is proposed. It combines item response theory, maximum likelihood esti-
mation, method of flow redistribution and other methods. Numerical example is presented.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The English language contains hundreds of words
directly or indirectly describing the different types of overt
and hidden abilities: from cognitive as, for example, mem-
ory and attention, to purely technical, such as reliability,
stability, capability, availability, durability, portability,
and reusability. In this paper, we deal only with the basic
and simplest issue of so-called one-dimensional ability,
when the test item performance of the object under test
(henceforth abbreviated OUT) can be explained by a single
latent ability. We consider the case when a qualitatively
homogeneous population of OUTs is tested using a set of
non-destructive test items having different, but unknown
beforehand levels of difficulty, and we need to evaluate/-
compare both the intrinsic abilities of these OUTs and the
difficulties of the test items. This type of set hereinafter
will be called the test and it can include any – but must
be the same for all OUTs – number of test items. For
instance, in the psychometrics test the OUT is an examinee,

a separate question on the exam is a test item and the
examination as a whole is a test. Usually, it is assumed
[1] that the test item response is estimated on the binary
scale base (pass/fail) and the results of different test items,
applied to the same OUT, are conditionally independent
(i.e., the response to one test item does not affect the
response to another). It is also assumed that the inherent
ability of the OUT is independent of the test item difficulty.
Homogeneity here means that the same item response
model is applied to all members of the population, but in
any case does not imply equality of the tested abilities
among these members.

Even in such a simplified model the matter of correct and
effective evaluation of test results has not been resolved
completely and is still a subject of discussion in psychomet-
rics and educational measurement [2]. An extensive study
of latent ability modeling and evaluation in education was
pioneered by [1], who proposed a well-known model of an
interconnection between the test item difficulty, the exam-
inee’s ability and the test result based on a standard logistic
distribution. The Rasch model was extensively studied and
extended during the last decades (see, e.g., [3–7] and refer-
ences therein). The problem of estimating the Rasch model
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parameters is tackled mainly by using one version of the
maximal likelihood estimation [8].

The problem, however, is discussed to a much lesser
extent in engineering, which prefers to deal with quantifi-
able test results, estimated on a predetermined scale of dif-
ficulties (e.g., life time testing). This state of affairs seems a
little strange, since in the broader context, testing can be
subjected to any property and any OUT: people, program
units, electronic components, materials, network connec-
tivity, etc. Moreover, engineering objects of interest are
more predictable and less variable, being free from purely
human restrictions. The technical test population can often
easily be established as more or less uniform, for instance
when all the parts belong to the same production batch. In
view of this, it seems desirable to develop some unifying/s-
tandardized approach for evaluating test results of such
objects, when the difficulty of test items is unknown before-
hand. The combination of two tests items – over-stressed
and overrated [9] – can serve an example of such a test as
well as testing including a wider variety of test items.

We propose an algorithm for test result evaluation
applicable to a broad spectrum of engineering tests satisfy-
ing the model assumptions described below in Section 2.
The proposed approach combines several already devel-
oped methods, allowing building a reasonable numerical
scheme for test results evaluation. The developed algo-
rithm is illustrated by a numerical example.

2. Testing model

Before focusing on the details of the testing model, we
would like to make some general considerations. Suppose
the studied ability a is distributed among the tested popu-
lation of OUTs according to some cumulative distribution
function (cdf) FðaÞ. It may be a discrete distribution, but
at the moment, this does not matter, because our aim is
to illustrate the general idea. Let d denote the difficulty
(or level of difficulty) of the test item in relation to the
studied ability. For the purpose of illustration only, let us,
for instance, consider an athlete’s physical fitness as a
and the height of the bar as d. We assume that there is
some known or supposed function pðdjaÞ, customarily
called the item response function (IRF), which expresses
the probability that the OUT with ability a will successfully
overcome the test item of difficulty d [8]. It is natural to
assume that the greater d is, the less is this probability
for every given a, i.e.,

@pðdjaÞ
@d

< 0: ð1Þ

Then, the proportion pðdÞ of OUTs that successfully over-
come the test item having difficulty d is

pðdÞ ¼
Z

pðdjaÞdFðaÞ: ð2Þ

Certainly, since @pðdjaÞ
@d < 0, also @pðdÞ

@d < 0, which simply
means that the more difficult the test item is, the less
OUTs pass it successfully.

It would seem that in the mathematical sense (2) is a
Fredholm integral equation of the first kind, representing

a classic measurement inverse problem [10,11], in which
one wants to restore the measured value on the basis of
studying the response pðdÞ of the measuring system given
response function pðdjaÞ. However, the problem is that the
test items’ level of difficulty in our case is unknown before-
hand, and neither is pðdÞ. This circumstance significantly
complicates the evaluation problem and its solution.

2.1. Model description

Let us assume that some population of N OUTs is tested
by the same test consisting of K test items of unknown
beforehand difficulty dk; k ¼ 1; . . . ;K. Every OUT is tested
independently, i.e., results of one OUT do not affect the
results of another. A posteriori the numbering of the test
items can be made in order of decreasing frequency of
OUTs that successfully passed every test item; hence, it is
reasonable to assume that dkþ1 P dk. In total, there exist
2K possible test results and this resolution does not allow
us to suggest more than 2K distinct levels of ability. It is
obvious that the greater is K, the better is the resolution.
Using ‘‘0’’ to indicate failure and ‘‘1’’ to indicate the suc-
cessful completion of a test item, one can present the
results of each OUT test as an ordered sequence of length
K consisting of zeros and ones. For example, for the test
consisting of K ¼ 3 items, all possible results are presented
by their respective binary codes as shown below in Table 1.

2.2. A notational interlude

� Xsequence – denotes any notion X relating to a correspond-
ing sequence. Namely:
– psequence – proportion of OUTs whose test results are

consistent with the corresponding sequence;
– asequence – the most likely ability of the OUTs, with

respect to which, the result obtained corresponds
to a given sequence

For example: p011 denotes the proportion of OUTs for
K ¼ 3, where the first test item is not passed, while the sec-
ond and the third test items are passed. The corresponding
ability is a011.
� dk – denotes the difficulty of kth test item, k ¼ 1; . . . ;K;
� pk – denotes the total proportion of OUTs, which suc-

cessfully passed the kth test item. The latter is obtained
by summing all psequence for which there is ‘‘1’’ at the kth
sequence’ position.
For example, for K ¼ 3; p1 ¼ p100 þ p101 þ p110 þ p111.
Note that

PK
k¼1pk P 1.

Table 1
Binary codes for K ¼ 3.

Sequence No. Test item 1 Test item 2 Test item 3

1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1
5 1 1 0
6 1 0 1
7 0 1 1
8 1 1 1
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