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a b s t r a c t

Finite element method is well established in estimating acoustic transmission loss (TL) of
passive reactive acoustic filters. However, the acoustic impedances derived from the estab-
lished empirical models are being used to model the perforated elements present in these
acoustic filters. Such empirical models have been established with known restrictions such
as position, shape, size, orientation and evenness of the perforations. In the present work,
finite element analysis in frequency domain has been demonstrated to circumvent the
necessity of such empirical models in estimating acoustic TL of reactive filters having per-
forated elements at zero mean flow condition. In order to achieve so, a three-pole measure-
ment based simulation has been carried out which exactly replicates the experimental
transmission-loss tube test setup. The essential necessity of simulating anechoic termina-
tion to perform three-pole measurement and the associated complexity has been resolved.
The constraint of desired meshing for estimating the acoustic TL of a perforated plate has
been quantified. The strength of the proposed methodology has been exploited by analyz-
ing reactive acoustic filters with various shapes of perforated components. Further, the
challenge of analyzing the reactive filters with external perforation has been considered.
In order to simulate the perforation facing to atmosphere, an additional domain or volume
with non-reflecting boundary attached to perforation, has been proposed. The proposed
methodology has been verified by evaluating the TL of a Helmholtz resonator with a leak
and of a perforated tube. Summarizing above, the proposed three-pole based finite element
methodology can be used for acoustic analysis of any shape and size of perforated compo-
nents and reactive filters with perforated elements.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Perforated filters are a compromise between the reac-
tive and absorptive types of acoustic filters and play a very
important role in general filter design. Hence, a precise
estimation of transmission coefficient of such filters is an
indispensable part in the design process. So far, acoustic
impedances of perforated components are approximated

empirically or analytically with many assumptions and
are used in evaluating the performances of such filters. It
is becoming increasingly difficult to ignore the limitations
involved in the empirical models or analytical solutions.

In the last three decades, numerous empirical and ana-
lytical models have been introduced to estimate the equiv-
alent acoustic impedance and the corresponding acoustic
TL of perforated filter components [1–9]. In recent years,
finite element method (FEM) and boundary element
method (BEM) have been well established in predicting
the acoustic TL of filters [1]. From industrial perspective,
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commercially available FEM or BEM based software enable
investigators to design complex acoustic filters. A variety
of software such as ABAQUS�, SYSNOISE� and VNOISE�

have been adopted by many investigators to estimate the
acoustic TL of filters [2–5]. Nevertheless, the equivalent
acoustic impedance derived empirically or analytically
has been used in these software to model the perforated
element. Such empirical models have been established
with known restrictions such as position, shape, size, ori-
entation and evenness.

In the present paper, the finite element analysis in fre-
quency domain has been demonstrated to circumvent the
necessity of empirical model in estimating acoustic TL of
perforated reactive filters at zero mean flow condition.
One of the commercially available FEM based software,
ANSYS� has been used for such purpose. Various issues
involved and the precautions desired in simulation have
been discussed. Choice of proper element type, corre-
sponding requirements of finite element quality and their
effect on the result accuracy has been demonstrated in
detail.

After this present section of introduction, Section 2
explains theoretical basis of finite element model for
acoustic analysis. In Section 3 benchmarking acoustic anal-
yses have been carried out. Acoustic performances of per-
forated plates have been evaluated in Section 4. In
Section 5, few complex perforated filters have been ana-
lyzed. The reactive filters with external perforation have
been analyzed in Section 6. The last section summarizes
some important observations of the present exercise.

2. Finite element model for acoustic analysis

Acoustic analysis, in our context, is based on the
hypothesis such as an enclosed volume of fluid, which is
compressible, in-viscous, without mean flow and with uni-
form mean density and pressure. Along with this, the
enclosure walls are assumed to be ideally rigid. Based on
the above assumptions, the acoustic wave equation may
be written as:

r2p ¼ 1
c2

@2p
@t2 ; ð1Þ

where c is the speed of sound in the medium, p is acoustic
pressure, t is time and r2 is Laplace operator [6]. Since the
viscous dissipation is neglected, the above expression is
also considered as loss-less wave equation for sound prop-
agation. Then, for a small change in pressure, dp, over a
finite fluid volume, the wave equation can be represented
in the integral form as:Z

V

1
c2 dp
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where, the matrix operator can be defined as:
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In above equation, V is the volume of the fluid domain, S is
the surface where the derivative of pressure normal to the
surface is applied and fng is the unit vector normal to the
surface S [7].

In simulating fluid–structure interaction problem, the
surface S is treated as the fluid–solid interface. The normal
pressure gradient of the fluid and the normal acceleration
of the structure at the fluid–structure interface S can be
expressed as:

fng � frpg ¼ �q0fng �
@2fug
@t2 ; ð4Þ

where fug is the displacement vector of the structure at
the interface. Now, the Eq. (4) can be rewritten as [8]:Z

V
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c2 dp

@2p
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Z
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ðfLgTÞðfLgpÞdV

þ q0

Z
S

dpfngT @2

@t2 fug
 !

dS ¼ f0g ð5Þ

In finite element modeling, using element shape function,

fNg, for pressure, element shape function, fN0gT , for dis-
placements, and nodal pressure vector f€peg, the second
order derivatives can be represented as:

@2p
@u2 ¼ fNg

Tf€peg ð6Þ

@2

@u2 fug ¼ fN
0gTf€ueg ð7Þ

where p ¼ fNgTfpeg and u ¼ fN0gTfueg. Now, the dis-
cretized wave equation can be written in matrix notation
as:

½MF �f€peg þ ½KF �fpeg þ q0½R�
Tf€uF;eg ¼ f0g; ð8Þ

where,

½MF � ¼
1
c2

Z
V
fNgfNgT dV ð9Þ

½KF � ¼
Z

V
½rN�T ½rN�dV ð10Þ

½R�T ¼
Z

S
fNgfngTfN0gT dS ð11Þ

The ½MF �; ½KF �; ½R�T are acoustic fluid mass matrix, acoustic
fluid stiffness matrix and acoustic fluid coupling matrix,
respectively. Assuming time harmonic input, p ¼ pejxt ,
the Eq. (1) can be re-written as:

r2pþ k2p ¼ 0; ð12Þ

where k ¼ ðx=cÞ is wave number, x is the angular fre-
quency (x ¼ 2pf=c).

3. Benchmarking

In general, the finite element analysis is resorted to
when the experimental investigation is not feasible. They
are used predominantly during the design stage of the
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