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a b s t r a c t

This fMRI study examines the changes in participants’ information
processing as they repeatedly solve the same mathematical prob-
lem. We show that the majority of practice-related speedup is pro-
duced by discrete changes in cognitive processing. Because the
points at which these changes take place vary from problem to
problem, and the underlying information processing steps vary in
duration, the existence of such discrete changes can be hard to
detect. Using two converging approaches, we establish the exis-
tence of three learning phases. When solving a problem in one of
these learning phases, participants can go through three cognitive
stages: Encoding, Solving, and Responding. Each cognitive stage is
associated with a unique brain signature. Using a bottom-up
approach combining multi-voxel pattern analysis and hidden
semi-Markov modeling, we identify the duration of that stage on
any particular trial from participants brain activation patterns.
For our top-down approach we developed an ACT-R model of these
cognitive stages and simulated how they change over the course of
learning. The Solving stage of the first learning phase is long and
involves a sequence of arithmetic computations. Participants tran-
sition to the second learning phase when they can retrieve the
answer, thereby drastically reducing the duration of the Solving
stage. With continued practice, participants then transition to the
third learning phase when they recognize the problem as a single
unit and produce the answer as an automatic response. The dura-
tion of this third learning phase is dominated by the Responding
stage.
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1. Introduction

Across domains, practice is acknowledged to have transformative effects on performance. Several
models of skill acquisition propose different explanations for how practice reduces the duration and
increases the accuracy of task performance. These models differ in whether they attribute speedup
either to discrete changes in the cognitive processes executed to solve a problem or to a greater effi-
ciency of the same processes. In this paper, we address both explanations within the context of mod-
eling the speed up in mathematical problem solving. In particular, we combine cognitive modeling
with new methods of analyzing fMRI data to understand the detailed changes that take place as par-
ticipants transition from the first time they solve a novel problem, to the point at which they automat-
ically recognize a problem’s solution.

1.1. Models of skill acquisition and practice related speedup

As people practice solving a problem, the time it takes to solve that problem decreases. Previous
research has focused on understanding the nature of this speed up. In their classic paper, Newell
and Rosenbloom (1981) observed that performance tends to speed up as a power function of the
amount practice, highlighting what has been called the ‘Power Law of Practice’. In their paper describ-
ing these effects, performance improvements were explained as chunking of cognitive processes into
fewer processes (Newell & Rosenbloom, 1981). Subsequent research has refined this characterization
of practice by investigating whether the speedup is really best fit as a power function (e.g. Heathcote,
Brown, & Mewhort, 2000), and by examining to what degree the speedup might reflect changes in the
strategies used for solving the problems (e.g. Delaney, Reder, Staszewski, & Ritter, 1998).

Unlike Newell and Rosenbloom’s work, the Race model, which is part of the Instance Theory
(Compton & Logan, 1991; Logan, 1988, 2002), described the learning mechanism for practice-
related speedup as involving a quick shift from computation to retrieval followed by a power-like
speed up in the retrieval. According to the Race model, each time a problem is practiced it becomes
encoded in memory; then, when a participant sees the problem again, each of the previously encoded
instances independently races to generate the response and the fastest process ‘wins the race’. As the
number of instances in which a participant retrieves the answer increases, the speed of the winning
retrieval will increase as well. This model not only predicts a power-law speedup with practice, but
also a decrease in the variability in latency with practice.

In contrast to the Race model, a number of studies have suggested the computation process may
have its own speedup before the shift to retrieval. Delaney et al. (1998) argued that both computation
and retrieval are strategies that have their own power-law speedup. Rickard’s Component Power Law
(CMPL) model (Bajic, Kwak, & Rickard, 2011; Bajic & Rickard, 2009; Rickard, 1997) focuses on two
sources of speedup—the discrete switch from computation to retrieval and the speed up within the
computation and retrieval phases. Initially Rickard focused on speed up in retrieval but he has also
suggested that faster associative retrieval may be responsible for speed up in the computations used
to solve a problem.

Fitts and Posner (1967) were the first to propose a three-phase model of skill acquisition that con-
sists of a cognitive phase, an associative phase, and an autonomous phase. Anderson (1982, 1987) later
related this to an early version of a cognitive architecture, the ACT theory. He suggested that the tran-
sition from the cognitive to the associative phase reflected a transition from computation of the
answers to declarative retrieval of learned answers, and that the transition to the autonomous phase
was produced when retrieval was replaced by a production rule that directly produced the response to
the stimulus.

The task in this paper is modeled within modern ACT-R theory (Anderson, 2007; Anderson et al.,
2004). ACT-R models specify the full time course of processing that occurs while performing a task,
from perceptual encoding through response generation, differentially leveraging specific functional
modules over the course of a task. A significant advantage of modeling at this level of detail is that
it allows us to relate a model of skill acquisition to changes in brain activation by identifying the major
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