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a b s t r a c t

The determination of errors generated by systems measuring dynamically changeable sig-
nals presents a difficult problem due to their unknown shape and the measurement dura-
tion. This paper presents a proposed solution to this problem by means of the signals
maximizing chosen error criterion. Thus, it refers to the commonly applied methods for
determining the accuracy class of systems intended for the measurement of static quanti-
ties.

The method of determining a signal with one constraint, maximizing integral-square
error, is discussed in this paper in detail. As an example, four acceleration sensors are con-
sidered and the maximizing signals from the range of one to twenty-five switchings are
determined. It is worth underlining that the paper presents a solution obtained by an ana-
lytical method instead of using optimization methods, the application of which is neces-
sary in the case of signals with an increased number of constraints.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In static measurements, the quality of the obtained re-
sults depends on the accuracy class of the measuring
instruments [1].

In the case of systems intended for the measurement of
dynamic signals, the legal regulations relating to the cali-
bration procedures do not exist. This results from the fact,
that errors generated by these systems depend not only on
their dynamic properties, but also on the shape of the input
signals. Such errors are expressed by the convolution inte-
gral of two signals. The first is the input signal, which can
achieve quite different shapes. The second signal presents
the kernel of the system and this one directly describe
the system dynamics [9,10].

Systems measuring the dynamic quantities are usually
calibrated in the frequency domain on the basis of their fre-
quency characteristics. Most often the amplitude–frequency
characteristic measurement is sufficient in this case [2–4].

One can find the different methods dealing with cali-
bration of the measuring systems, for example, by means
of steady state random signals, one harmonic or multi-
component signals and so forth [5,6]. However, it just
seems that the most important theory of dynamic system
calibration is based on the theory of maximum errors [7–
12]. According to this theory, a signal of any shape, which
could occur on the input of the measuring system will al-
ways generate the error of less than or at most equal to
the maximum value. This means that the calibration result
is completely independent of the shape and dynamics of
the input signal [7–9].

The procedures of calibration include:

1. Determination of the mathematical model of the
measuring system and its standard.

2. Choice of the error criterion.
3. Analysis of the constraints referring to the input

signal.
4. Determination of the maximizing signals.
5. Error calculation.
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The integral-square error, which is very important for
many classes of measuring systems, is applied in this
paper.

According to the theory of the maximum errors, one
constraint, referring to the magnitude a, or simultaneously
two constraints, referring to the magnitude and the rate of
change #, should be imposed on input signals. In the case
of one constraint, the input signals have the ‘bang-bang’
shapes, while for two constraints these signals are triangu-
lar or trapezoidal shape [7].

For one constraint, the input signal maximizing error
can be determined analytically, which requires the solu-
tion of complicated integral equations. But in the case of
two simultaneous constraints, determination of this error
is impossible analytically.

The analytical method for determining switching in-
stants, describing the maximizing signal with one con-
straint as well as relevant integral-square errors I(x0) is
considered. The values of the maximum errors and corre-
sponding number of switchings for Analog Devices and
Freescale accelerometers with cut-off frequency equal to
400 Hz are listed in table. Switching instants generating
the maximum value of errors and the graphical relation be-
tween the values of the error and the number of switchings
are presented.

The originality of presented solutions refers to the
application of the standard, presented by the ideal filter
and the MathCad program used for calculation of the signal
maximizing the integral-square error for one to twenty-
five switchings.

2. Mathematical formulae

Let us assume that

ymðtÞ ¼
Z t

0
xðvÞkmðt � vÞdv ð1Þ

ysðtÞ ¼
Z t

0
xðvÞksðt � vÞdv ð2Þ

are the outputs of the measuring system and its standard
respectively, where x(t) is the input signal, km(t) and ks(t)
are impulse responses for t e [0, T].

The standard presents the ideal low-pass filter of im-
pulse response

ksðtÞ ¼
c
p2pfcSinc ½2pfcðt � t0Þ� ð3Þ

where c, t0 and fc denote the filter coefficient: amplifica-
tion, time delay and cut-off frequency [11,12].

The input signal x(t) with one constraint has the form of
a ‘bang-bang’ with the magnitude ±a. The output signal
ys(t) relative to ym(t) is delayed by t0. In order to compare
these signals it is necessary to shift ys(t). Fig. 1 presents
the procedure for determining the integral-square error.

The input signal x(t), for n switching instants is de-
scribed by the vector of the times (t1, t2, . . ., tn).

On the basis of the convolution integral properties, tak-
ing into account time shifting t0, we have

ysðt þ t0Þ ¼
Z t

0
xðsÞks½ðt þ t0Þ � s�ds ð4Þ

and

yðtÞ ¼ ymðtÞ � ysðtÞ ¼
Z t

0
xðsÞkðt � sÞds ð5Þ

where

kðtÞ ¼ kmðtÞ � ksðt þ t0Þ ð6Þ

The integral square error is defined by [10]

IðxÞ ¼
Z T

0
y2ðtÞdt ¼ ðKx;KxÞ ¼ ðK�Kx; xÞ; x 2 X ð7Þ

where X is the set of signals x, K⁄ is conjugate of K, and

Kx ¼ yðtÞ ð8Þ

On the basis of the (7) and (8) we can write

IðxÞ ¼ ðy;KxÞ ¼ ðx;K�yÞ ð9Þ

Eq. (9) can be written as followsZ T

0
yðtÞ

Z t

0
kðt � sÞxðsÞdsdt ¼

Z T

0
xðtÞ½K�y�dt ð10Þ

Extension the upper limit of integration on the left side
of formula (10) givesZ T

0
yðtÞ

Z T

0
kðt � sÞxðsÞdsdt ¼

Z T

0
xðtÞ½K�y�dt ð11Þ

Changing the integration order in (11) and replacing t
by s we haveZ T

0
xðtÞ

Z T

0
kðs� tÞyðsÞdsdt ¼

Z T

0
xðtÞ½K�y�dt ð12Þ

Because of that the integrand in (12) is equal to zero for
s < t we can write [7]Z T

0
xðtÞ

Z T

t
kðs� tÞyðsÞdsdt ¼

Z T

0
xðtÞ½K�y�dt ð13Þ

Taking into account (8) and (13) we have

K�Kx ¼
Z T

t
kðs� tÞ½

Z s

0
xðvÞkðs� vÞdv�ds ð14Þ

Denoting by x0(t) the signal x(t) maximizing error I(x),
we have

Iðx0Þ ¼ supfIðxÞ : x 2 Xg ð15Þ

From (15) it result that

½ð@IðxÞ=@xÞjx0
; x� x0� 6 0 ð16Þ

Fig. 1. Procedure for determining the integral-square error.
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