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a b s t r a c t

Multi-baseline and multi-frequency band can improve the performance of phase unwrap-
ping. This paper, taking the multi-baseline InSAR (interferometric synthetic aperture radar)
system as an example, proposes a fast method for multiple-baseline and multi-frequency
band phase unwrapping in the frequency domain. The basic idea is to perform a least-
squares minimization of the differences between the estimated and absolute phase gradi-
ents on all interferograms simultaneously, which are all in the frequency domain. Results
on real and simulated data show that the frequency-domain method yields results similar
to those of the time-domain method while improving efficiency by avoiding mirroring
operations.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Phase unwrapping is usually defined as the reconstruc-
tion of the real value of the phase from the principal value.
In addition to the application of radar interferometry [1],
phase unwrapping is also applied significantly in the
adaptive optics (AO) [2], nuclear magnetic resonance
(NMR) [3], interferometric synthetic aperture sonar
(InSAS) [4], electronic speckle pattern interferometer
(ESPI) [5], seismic processing [6] and so on. Multiple-
baseline InSAR technology had been widely used for DEM
generation. With other parameters held constant, longer
baselines enable more accurate height estimation (and
better height-to-phase noise ratios), but also increase the
possibility that steep terrain may cause phase aliasing,
thereby degrading height measurements. On the other

hand, short baselines reduce the possibility of phase alias-
ing, but result in poorer phase-to-height sensitivity [7]. The
multi-frequency band InSAR also has a similar law.
Therefore, use of multiple baselines or multi-frequency
band can improve the performance of phase unwrapping.
In addition, the use of two acquisitions with similar
baseline lengths has the additional advantage of improving
relative height accuracy [8]. At present, methods
commonly used for multiple-baseline or multi-frequency
band phase unwrapping include least-squares methods in
the time domain [9], Kalman filtering methods [10],
maximum-likelihood methods [11], Bayesian approaches
[12], the Joint Subspace Projection method [13], the Mini-
mum Cost Flow method [14,15], General formulation
method [16], and others.

The least-squares method in the time domain, a robust
technique, calculates the least sum of squares of the
differences between the estimated and weighted sums
for each baseline or each band phase gradient. In general,
there are two solutions of the time-domain least-squares
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two-dimensional phase-unwrapping problem: the cosine
transform [17] and the Fourier transform [18]. Only the
Fourier-transform method requires mirroring operations,
which are used to avoid formulation of boundary condi-
tions and the need for a cosine transform. Like any method,
the simple least-squares method has its particular defects;
for instance, it cannot effectively remove systematic errors
such as those arising from undersampling of the topogra-
phy. Therefore, two-dimensional weighted least-squares
methods have been proposed (for example, by [18]) to
provide a partial solution.

In this paper, a fast phase-unwrapping algorithm is
proposed for multiple-baseline and multi-frequency band
interferometry in the frequency domain. Similarly to most
other multiple-baseline and multi-frequency band
approaches, it is an extension of the single-baseline case
described in [19]. Because it avoids the mirroring
operations of the time-domain algorithm [9,18], it achieves
better efficiency.

2. Problem formulation

Assume that there are L interferograms and that the
wrapped interferometric phase value corresponding to
the kth baseline or band is uk

m;n, where k = 1, 2,. . ., L,
m = 0, 1,. . ., M � 1, n = 0, 1,. . ., N � 1, and M, N are the
number of points in the interferogram in the range and
azimuth directions respectively. Let us consider as a refer-
ence the first interferometric SAR data pair and let ak be:

ak ¼ b1=bkðk ¼ 1;2; . . . ; LÞ ð1Þ

where bk is the normal baseline or wavelength correspond-
ing to the kth interferometric phase diagram. Define the
two directional gradient functions of the phase diagram as:

Dk;x
m;n ¼W uk

mþ1;n�uk
m;n

n o
; m¼0;1; . . . ;M�2; n¼0;1; . . . ;N�1

Dk;y
m;n ¼W uk

m;nþ1�uk
m;n

n o
; m¼0;1; . . . ;M�1; n¼0;1; . . . ;N�2

8><>:
ð2Þ

where W{�} is a phase-wrapping function that wraps all
values of its argument into the range (�p, p) by adding
or subtracting an integral number of 2p radians from its
argument, x and y are the range and azimuth directions
respectively of the interferogram. Let us extend the defini-
tion of Dk;x

m;n and Dk;y
m;n to the grid of points (m, n), for m = 0,

1,. . ., M � 1; n = 0, 1,. . ., N � 1 by defining:

c
Dk;x

M�1;0¼ c;Dk;y
0;N�1¼ c 8c2 ð�p;pÞ

Dk;x
M�1;n¼Dk;x

M�1;n�1þDk;y
1;n�1�Dk;y

M�1;n�1; n¼1; . . . ; N�1

Dk;y
m;N�1¼Dk;y

m�1;N�1þDk;x
m�1;1�Dk;x

m�1;N�1; m¼1; . . . ; M�1

8>><>>:
ð3Þ

The extension can satisfy the irrotational-field boundary
condition after further periodic expansion by discrete
Fourier transform [19].

Assuming that Fk;x
p;q and Fk;y

p;q are two-dimensional fast
Fourier transforms (2D FFTs) of Dk;x

m;n and Dk;y
m;n respectively,

the irrotational-field condition [19] in the frequency
domain can be expressed as follows:

Fk;x
p;qðe2piq

N � 1Þ ¼ Fk;y
p;qðe2pi p

M � 1Þ p ¼ 0;1; . . . ;M � 1;

q ¼ 0;1; . . . ;N � 1 ð4Þ

Let /m,n be the least-squares solution of a set of multi-
ple-baseline or multi-frequency band phase-unwrapping
equations in the frequency domain and ~Dx

m;n, ~Dy
m;n its two

directional gradient functions. ~Fx
p;q and ~Fy

p;q are the respec-
tive 2D FFTs. In a rotational field, Eq. (4) does not hold.
Suppose that ~Fx

p;q and ~Fy
p;q satisfy the irrotational-field

condition:

~Fx
p;qðe2piq

N � 1Þ ¼ ~Fy
p;qðe2pi p

M � 1Þ p ¼ 0;1; . . . ;M � 1;

q ¼ 0;1; . . . ;N � 1 ð5Þ

The goal of the least-squares algorithm in the frequency
domain is to minimize the functional:

J¼
XL

k¼1

XM�2

p¼0

XN�1

q¼0

akFk;x
p;q� eF x

p;q

��� ���2þXM�1
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XN�2
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��� ���2" #
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Therefore,

J¼ L
XM�2

p¼0
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q¼0
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where C¼1
L
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k¼1ðakFk;x
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2
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2
is constant.

Therefore, Eq. (9) is equivalent to:

J0 ¼
XM�2

p¼0

XN�1

q¼0

~Fx
p;q � F̂x

p;q

h i2
þ
XM�1

p¼0

XN�2

q¼0

~Fy
p;q � F̂y

p;q

h i2
!min ð10Þ

where F̂x
p;q ¼ 1

L

PL
k¼1akFk;x

p;q and F̂y
p;q ¼ 1

L

PL
k¼1akFk;y

p;q.

Let C1 ¼ ðe2pi p
M � 1Þ, C2 ¼ ðe2piq

N � 1Þ. Simultaneous solu-
tion of Eqs. (5) and (10) yields:

~Fx
p;q ¼

C1C1F̂x
p;q þ C1C2F̂y

p;q

C1C1 þ C2C2
ð11Þ

~Fy
p;q ¼

C2C1F̂x
p;q þ C2C2F̂y

p;q

C1C1 þ C2C2
ð12Þ

where C1, C2 are the conjugates of C1, C2.
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