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The processing dynamics underlying temporal decisions and the response times they generate have received
little attention in the study of interval timing. In contrast, models of other simple forms of decision making
have been extensively investigated using response times, leading to a substantial disconnect between temporal
and non-temporal decision theories. An overarching decision-theoretic framework that encompasses existing,
non-temporal decision models may, however, account both for interval timing itself and for time-based
decision-making.We sought evidence for this framework in the temporal discrimination performance of humans
tested on the temporal bisection task. In this task, participants retrospectively categorized experienced stimulus
durations as short or long based on their perceived similarity to two, remembered reference durations and were
rewarded only for correct categorization of these references. Our analysis of choice proportions and response
times suggests that a two-stage, sequential diffusion process, parameterized to maximize earned rewards, can
account for salient patterns of bisection performance. The first diffusion stage times intervals by accumulating
an endogenously noisy clock signal; the second stagemakes decisions about the first-stage temporal representa-
tion by accumulating first-stage evidence corrupted by endogenous noise. Reward-maximization requires that
the second-stage accumulation rate and starting point be based on the state of the first-stage timer at the end
of the stimulus duration, and that estimates of non-decision-related delays should decrease as a function of stim-
ulus duration. Results are in accord with these predictions and thus support an extension of the drift–diffusion
model of static decision making to the domain of interval timing and temporal decisions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In its simplest form, time tracking ability can modulate an agent's
expectancy of events that exhibit some level of temporal predictability
(e.g., rewards that are delivered on average every 5 s). Frequently,
humans and non-human animals must not only anticipate events but
must also make explicit judgments about perceived time. For instance,
by comparing the currently perceived time to remembered time inter-
vals, an individual can distribute its responses differentially during
a trial between two options that predict reward at different delays in
order to maximize reward (e.g., Balcı, Freestone, & Gallistel, 2009;
Kheifets & Gallistel, 2012).

Simple, non-temporal perceptual decisions have long beenmodeled
according to principles of rational decision making. Signal detection
theory (SDT, Green & Swets, 1966), for example, offers an account of
choice proportions that change as a function of a payoff scheme.
Evidence-accumulation models such as the drift–diffusion model
(DDM) have extended SDT to give detailed accounts of response time

distributions in such tasks (Ratcliff, 1978, 1981, 1985, 1988, 2002).
Traditionally, the stimuli used in these experiments are categorized ac-
cording to the level of some defining sensory quality, such as intensity
(e.g., loudness) or some other feature (e.g., direction of motion). In con-
trast, equivalent theoretical accounts have not been given for decisions
in which stimuli are categorized only according to their duration.

Historically, to account for performance in such scenarios, models of
performance in two-choice temporal decision tasks – such as temporal
bisection (Church & Deluty, 1977), temporal generalization (Church &
Gibbon, 1982) and time-left (Gibbon & Church, 1981) – incorporate
some form of “comparator” that bases decisions on differences between
duration estimates (see Buhusi & Meck, 2005). These studies, however,
have primarily focused on choice proportions, and to a large extent have
overlooked response times. Consequently, the dynamics of comparison
and the relation of these dynamics to interval timing processes
themselves have largely been left unexamined (although see Leon &
Shadlen, 2003; Kononowicz & van Rijn, 2011; Ng, Tobin, & Penney,
2011). This disconnect between analytical approaches to temporal and
other simple decision-making performance has resulted in a theoretical
gap between the areas of interval timing and perceptual decision-
making.

We show that an overarching decision-theoretic framework that
encompasses existing, non-temporal decision models can nevertheless
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account both for interval timing itself and for time-based decision-
making. We previously showed (Simen, Balcı, deSouza, Cohen, &
Holmes, 2011a) that a noisy evidence-accumulation process (specifical-
ly, a drift–diffusion process) can account for well-known patterns
typically observed in simple, timed responding, such as unbiased
estimation and timescale invariance of response time distributions, as
well as for new, predicted patterns, such as one-trial learning of inter-
vals, and inverse Gaussian response time distributions with skewness
equal to three times their coefficient of variation (standard deviation
divided by the mean).

We now go beyond simple, timed responding and demonstrate that
a drift–diffusion-based account can explain all the critical features of
two-alternative forced-choice (2AFC) tasks in a temporal context. Our
results favor a unified theoretical view of timing and both temporal
and non-temporal decision-making in terms of drift–diffusion mecha-
nisms, parameterized so as to maximize reward rates earned from
repeated decisions. We tested the predictions of this unified theory
using one of the most common tasks in the psychophysical study of
interval timing: the temporal bisection task.

1.1. Temporal bisection task

In this task, participants are initially trained to discriminate a pair
of reference durations, signaled by a stimulus such as a tone or light,
as either short or long. Following this pre-training, participants are
presented with a random sequence of short or long reference-
duration stimuli and intermediate duration stimuli. Participants are
asked to categorize these as short or long based on their similarity
to the two reference durations. Correct categorizations of the
reference durations are rewarded; categorizations of intermediate
durations and incorrect reference categorizations are not rewarded.
The observed proportion of long choices as a function of stimulus dura-
tion defines a psychometric function of time that is typically sigmoidal.
The stimulus duration at which a participant exhibits equal proportions
of short and long choices is known as the point of subjective equality
(PSE). The steepness of the psychometric function is an index of the
participant's level of timing uncertainty.

In this study, we evaluated a process model of decision-making
in temporal bisection as a two-stage drift–diffusion process. Before
outlining the basics of this model of temporal bisection, we will briefly
describe a single-stage drift–diffusion model of two-alternative forced
choice as it is typically applied in a non-temporal context. The model
we subsequently propose relies heavily on the same drift–diffusion
dynamics.

1.2. The drift–diffusion model

Diffusion models have been successfully applied to two-alternative
forced choice in several cognitive domains that include but are not lim-
ited tomemory (e.g., Ratcliff, 1978. 1988), and perceptual (e.g., Starns &
Ratcliff, 2010) and economical decision making (e.g., Krajbich, Lu,
Camerer, & Rangel, 2012). The drift–diffusion model (DDM) assumes
that sensory information is noisy. The model's decision variable equals
the difference between the evidence supporting the two hypotheses, in-
tegrated over time. As a result, the variable carries out a random walk,
just as a stock price varies over time (see Fig. 1A). When it crosses one
of two absorbing boundaries, or decision thresholds, the corresponding
decision is made. The first threshold-crossing time is identified as the
decision time (DT). An additional non-decision latency (Ter) is used to
capture sensory encoding (e) andmotor response (r) delays. The overall
response time is therefore RT = DT + Ter.

In its simplest form, the DDM is defined by the starting point (z) and
threshold (a) parameters, and an equation governing the decision
maker's state of preference x for one or the other choice option. This
state of preference changes over time until eventually it descends
below 0 or rises above a. Each event corresponds to making one of the

two possible choices, so we refer to the 0 and a levels respectively
as the lower and upper response thresholds. Technical details of the diffu-
sionmodel, including the generalized form of it (Ratcliff, 1978) typically
seen in the literature, are described further in Supplementary Online
Material.

In our case, the two hypotheses are short vs. long (without loss of
generality, we can assume that upper threshold crossings produce a
long response, while lower threshold crossings produce short
responses). Another key parameter is “v”, which represents the average
rate of increase in X over time. Biases toward either type of response can
be built in bymoving the starting point z closer to either a or 0; perfectly
unbiased responding occurswhen z= a / 2.We can simulate the DDM's
evolution over time with the following simple difference equation, in
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Fig. 1. A)A drift–diffusion process (black) used to track time up to the duration of the long
reference duration (when the process intersects the blue threshold). B) A decision process
begins when a stimulus duration ends. Seven decision processes (green) are shown for
seven different stimulus durations. The starting point of the decision process equals the
location of the timer process at the end of the stimulus. Note that the decision process
starts at different locations depending on where the first process is at the end of the stim-
ulus duration. Drift is toward the long threshold if the timer location exceeds the level of
subjective equality (black dashed line). C) An ensemble of trials with a stimulus duration
of 1.4 s. Since this time is near the point of subjective equality, the decision process has a
distribution of starting points (centered on black dashed line) and drift values (withmean
0). Note that Fig. 1A only shows thefirst stage timer process, Fig. 1B shows the trajectory of
the second-stage decision process for different stimulus durations (for a given first stage
timer trajectory), and Fig. 1C shows thefirst and second stage trajectories for a given stim-
ulus duration.
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