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a b s t r a c t

Magnetic resonance is a well-established tool for structural characterisation of porous media. Features of
pore-space morphology can be inferred from NMR diffusion–diffraction plots or the time-dependence of
the apparent diffusion coefficient. Diffusion NMR signal attenuation can be computed from the restricted
diffusion propagator, which describes the distribution of diffusing particles for a given starting position
and diffusion time.

We present two techniques for efficient evaluation of restricted diffusion propagators for use in NMR
porous-media characterisation. The first is the Lattice Path Count (LPC). Its physical essence is that the
restricted diffusion propagator connecting points A and B in time t is proportional to the number of dis-
tinct length-t paths from A to B. By using a discrete lattice, the number of such paths can be counted
exactly. The second technique is the Markov transition matrix (MTM). The matrix represents the
probabilities of jumps between every pair of lattice nodes within a single timestep. The propagator for
an arbitrary diffusion time can be calculated as the appropriate matrix power. For periodic geometries,
the transition matrix needs to be defined only for a single unit cell. This makes MTM ideally suited for
periodic systems.

Both LPC and MTM are closely related to existing computational techniques: LPC, to combinatorial
techniques; and MTM, to the Fokker–Planck master equation. The relationship between LPC, MTM and
other computational techniques is briefly discussed in the paper. Both LPC and MTM perform favourably
compared to Monte Carlo sampling, yielding highly accurate and almost noiseless restricted diffusion
propagators. Initial tests indicate that their computational performance is comparable to that of finite
element methods. Both LPC and MTM can be applied to complicated pore-space geometries with no ana-
lytic solution. We discuss the new methods in the context of diffusion propagator calculation in porous
materials and model biological tissues.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction and background

1.1. Diffusion magnetic resonance

Molecular diffusion is a physical phenomenon that arises from
random thermal motion of molecules [1]. The molecules in a liquid
undergo continuous translational motion due to their possessing a
non-zero kinetic energy (‘‘thermal energy’’) [2]. The molecules

continuously interact and collide with each other, resulting in a
chaotic, quasi-random motion pattern. The trajectory of a diffusing
molecule is therefore represented by a random walk. A well-known
property of diffusion is that the mean-squared displacement of the
diffusing molecules, hDx2i, is proportional to time:

hDx2i ¼ 2Dt ð1Þ

where t is the time elapsed and D is known as the diffusion coeffi-
cient. In an isotropic liquid, there is no preferred diffusion direction,
and Eq. (1) describes the displacement of molecules in any given
direction. On a more detailed level, the distribution of molecular
displacements is described by the probability density function
known as the diffusion propagator:

Pð0jx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
4pDt
p e�

x2
4Dt ð2Þ
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Abbreviations: BC, boundary condition; D, diffusion coefficient; FA, fractional
anisotropy of the diffusion tensor; FD, finite difference; FE, finite element; LPC, Lattice
Path Count; MTM, Markov transition matrix; MC, Monte Carlo; NMR, nuclear magnetic
resonance; NP, the number of Monte Carlo tracer particles; NT, the number of Monte
Carlo time steps; PGSE, pulsed field-gradient spin echo; RF, radiofrequency;
D, diffusion interval.
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Analysis of Eq. (2) shows that the characteristic width of the mole-
cules’ distribution grows as

ffiffiffiffiffiffiffiffi
2Dt
p

– in other words, the molecules
spread away from their original positions. This behaviour is
exploited in diffusion-sensitive nuclear magnetic resonance
(NMR) spectroscopy.

The basic setup of a diffusion NMR measurement can be illus-
trated using the experiment known as pulsed field gradient spin
echo (PGSE) [3], which is illustrated in Fig. 1. The first radiofre-
quency (RF) pulse in this sequence (the 90� RF pulse) converts
the equilibrium longitudinal nuclear magnetisation into a uniform
comb of transverse magnetisation, while the first gradient pulse
winds this comb into a helix of the pitch 2p/cgd, where c, g and
d are the magnetogyric ratio of the nucleus, the amplitude and
the duration of the field gradient pulse, respectively. It is conve-
nient to introduce the diffusion wavevector q, whose amplitude
describes the tightness of the magnetisation helix:

q ¼ cgd ð3Þ

The interval D shown in Fig. 1 is known as the diffusion interval.
Due to random molecular diffusion during the interval D, the
magnetisation components of different phases become mixed up,
causing attenuation of the amplitude of the helix. Assuming that d
is short, the magnetisation helix at the end of the diffusion interval
D can be described as a convolution of the original helix and the
propagator given by Eq. (2). The magnetisation is then refocused
into a detectable (but attenuated) comb using the 180� RF pulse
and the second gradient pulse. The diffusive attenuation of the
refocused magnetisation and the relative amplitude of the
measured signal are given by [4]:

SðgÞ
S0
¼ e�Dtq2 ð4Þ

where t is the effective diffusion time (for the PGSE experiment,
t = D � d/3).

The diffusion coefficient can be extracted by repeating the
spin-echo experiment multiple times with different values of q
and plotting the logarithm of the signal, ln(S), vs the quantity
tq2 = c2g2d2(D � d/3). This plot is known as the Stejskal–Tanner

plot. In solution (or, more generally, in the case of unrestricted dif-
fusion), this plot is a straight line whose slope is the negative of the
diffusion coefficient.

1.2. Diffusion NMR for porous media characterisation

Diffusion in solution is non-directional, meaning that the 3D gen-
eralisation of the diffusion propagator given by Eq. (2) is spherically
symmetric and Gaussian. However, this is not generally the case for
diffusion within porous media. The diffusional motion of molecules
within porous media is obstructed by the walls forming the pore
space; this is known as restricted diffusion. The walls can be either
solid walls (e.g., in sedimentary rocks) or, in biological tissues, cell
membranes or components of the extracellular matrix. In general,
these structures have a twofold effect on the motion of diffusing
molecules: first, some locations are no longer available for the mol-
ecules to diffuse into; and second, the presence of obstructions cuts
out some of the paths that would otherwise be present for a mole-
cule diffusing from an available location r to another available loca-
tion r0. As a result, the mathematical function describing the
restricted diffusion propagator P(r|r0, t) is in general no longer
Gaussian. This function can become very complicated and, in most
cases, cannot be expressed in a compact analytic form. Nevertheless,
the diffusion propagator and the detected PGSE signal are still
related in the short-d limit via the convolution operation:

Sðg;DÞ ¼
Z Z

qðrÞPðrjr0;DÞeiq�ðr0�rÞd3rd3r0 ð5Þ

Here, the function q(r) describes the spin density within the pore
space; it is zero within solid walls but non-zero within the pores
themselves. As seen from Eq. (5), the restricted diffusion propagator
P(r|r0, D) provides the link between the pore space geometry and
the diffusive signal attenuation measured in NMR experiments
[5,6]. Analysis of the diffusion propagator can therefore enable an
improved understanding of the relationship between the NMR sig-
nal and features of the pore space morphology. The restricted diffu-
sion propagator is therefore a crucial construct for the
interpretation of NMR diffusion measurements.

Besides providing a link between the pore space geometry and
the MR signal, the diffusion propagator is significant in its own
right. In diffusion propagator imaging and related techniques
[7,8], the ensemble average propagator is used to characterise tis-
sue microstructure.

1.3. Techniques for calculation of the diffusion propagator

The techniques presented in this paper draw on the wide field
of existing approaches to diffusion propagator calculation in por-
ous media and biological tissues. Representative approaches
include:

(1) Analytic solution: This entails solving the diffusion equation
subject to the boundary conditions, which are determined
by the nature of the pore space. The boundary conditions
typically encountered in physical or biological systems are
reflecting walls (oP/ox = 0 at the boundary), absorbing walls
(P = 0 at the boundary), and partially reflecting walls (oP/ox
across the boundary is related to the concentration differ-
ence and the permeability of the boundary). The solution
of the diffusion equation describes the distribution of the
diffusing molecules as a function of time and position for a
given starting position and the given pore space. For simple
pore geometries, the solution may be able to be expressed
analytically, often as an infinite series. Analytic solution of
the diffusion equation often benefits from the use of special
techniques, e.g. the Laplace transform [9,10] or fractional
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Fig. 1. The PGSE diffusion experiment: the NMR pulse sequence and the state of
transverse magnetisation within the sample. The solid rectangles in the pulse
sequence are RF pulses; the hatched rectangles are gradient pulses. The 90� RF pulse
converts the equilibrium longitudinal magnetisation into a uniform comb of
transverse magnetisation. The first gradient pulse winds the comb into a helix of
the pitch 2p/cgd, sensitising the magnetisation to diffusion. Diffusion during the
interval D mixes the magnetisation of different phases, causing the helix to
attenuate. The 180� RF pulse and the second gradient pulse refocus the helix into a
uniform (but attenuated) comb; its amplitude is the amplitude of the measured
signal. The interval TE is the echo time. The diffusive attenuation of the signal is
given by Eq. (4).
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