

Materials Science in Semiconductor Processing

journal homepage: <www.elsevier.com/locate/mssp>

First-principles calculations of phonon and thermodynamic properties of OsSi₂

Jun-ichi Tani ^{*}, Hiroyasu Kido

Electronic Materials Research Division, Osaka Municipal Technical Research Institute, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan

article info

Available online 18 December 2014

Keywords: Silicides Phonons Thermodynamic properties First-principles calculation

ARSTRACT

The structure, lattice dynamics, and some thermodynamic properties of orthorhombic OsSi₂ were investigated using a first-principles density functional theory (DFT). Linear response theory was used to calculate the phonon dispersion relation and phonon density of states for OsSi₂ as well as its infrared and Raman active mode frequencies. In this study, the thermodynamic properties, including vibrational entropy (S_{vib}) , constant-volume specific heat (C_v), and Debye temperature (Θ _D), were predicted theoretically and discussed. \odot 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Semiconducting transition silicides have gained considerable attention as potential candidates for optoelectronics, photovoltaics, and thermoelectrics [\[1\].](#page--1-0) In particular, to date, iron disilicide ($β$ -FeSi₂), an environmentally friendly, nontoxic, low-cost material made from abundant elements found in the Earth's crust, has been extensively investigated [\[2](#page--1-0)–[5\]](#page--1-0). Despite the fact that osmium disilicide $(OSi₂)$ has a crystal structure identical to that of $β$ -FeSi₂, very few experimental and theoretical studies have been reported for OSi_2 [\[6](#page--1-0)–[11\]](#page--1-0). [Fig. 1](#page-1-0) shows the crystal structure of $OSSi₂$, containing 16 Os and 32 Si atoms per unit cell. The crystal structure of $0sSi₂$ belongs to a base-centered orthorhombic in the Cmca (No. 64) space group, with lattice constants of $a=10.1496$ Å, $b=8.1168$ Å, and $c=8.2230$ Å [\[12\]](#page--1-0). There are two crystallographically inequivalent sites (Os_I , Os_{II} , Si_I , and Si_{II}) for both the Os and Si atoms in OsSi₂. Both the Os_I and Os_{II} atoms are surrounded by 8 nearest-neighbor Si atoms with slightly different distances, and have the crystallographic point symmetries 2 (C_2) and m (C_5), respectively. Migas et al. [\[9\]](#page--1-0) reported on the optical properties of isostructural β-FeSi₂,

OsSi₂, and two ternary compounds, $Os_{0.5} Fe_{0.5}Si₂$ and $Fe_{0.5}Os_{0.5}Si₂$, in which the Fe_I or Fe_{II} sites were replaced by Os in the $β$ -FeSi₂ structure, respectively, according to the firstprinciples calculations. They noted the potential for band-gap engineering by composition owing to the $Os_{0.5} Fe_{0.5}Si₂$ having a predicted direct band-gap, while $β$ -FeSi₂, OsSi₂, and $Fe_{0.5}Os_{0.5}Si₂$ have indirect band-gaps. Moreover, the elastic properties such as elastic constants, bulk modulus, shear modulus, and Young's modulus of OsSi₂ were investigated using the first-principles calculations [\[10](#page--1-0),[11\].](#page--1-0)

In our previous paper, we reported the detailed latticedynamical properties of $β$ -FeSi₂ based on first-principles calculations [\[13\]](#page--1-0). The calculated vibrational entropy, specific heat, and Debye temperature of $β$ -FeSi₂ from these calculations are in agreement with previous experimental data. At a finite temperature, numerous physical properties of solids are greatly influenced by the solid's crystal vibration. Accordingly, it is vital to investigate the vibrational properties of OsSi₂. However, as far as we know, few experimental and theoretical studies on the phonons of $OSSi₂$ have been reported. In this study, we report on the detailed latticedynamical properties of $OSSi₂$, including the phonon dispersion relations, the phonon density of states, the infrared (IR) and Raman active phonon frequencies, the Born effective charge, and the thermodynamic properties, based on first-principles calculations.

^{*} Corresponding author. Tel.: $+81669638081$; fax: $+81669638099$. E-mail address: tani@omtri.or.jp (J.-i. Tani).

Fig. 1. The OsSi₂ unit cell. The large spheres represent Os and the small spheres represent Si. There are two crystallographically inequivalent sites for both types of atoms OS_I , OS_{II} , Si_I , and Si_{II}).

2. Computational details

We used the CASTEP (Accelrys Inc.) software package [\[14\]](#page--1-0) to perform the density-functional theory (DFT) planewave pseudopotential calculations within local density approximations (LDA). The norm-conserving pseudopotential, generated using the optimization scheme of Lin et al. [\[15\],](#page--1-0) was utilized. The valence electron configurations of the Os and Si atoms were $5d^66s^2$ and $3s^23p^2$, respectively. The Ceperley–Alder form of the exchange correlation potential, as parameterized by Perdew and Zunger [\[16\],](#page--1-0) was used in the LDA. A base-centered orthorhombic primitive cell having 24 atoms $(4 \text{ Os}_{I}$, 4 Os_{II} , 8 Si_{I} , and 8 Si_{II}) was built. The total energy of the unit cell converged to better than 1 meV/atom using the valence electron wave functions in a plane wave basis, with a kinetic energy cutoff of 560 eV. The density mixing method was used for electronic minimization. In the geometry optimization and lattice-dynamical calculations, the Brillouin-zone integrals were performed using the Monkhorst-Pack grids [\[17\]](#page--1-0) of a $3 \times 3 \times 2$ mesh with a 0.05 Å⁻¹ k-point spacing. The linear response method [\[18](#page--1-0)–[20\]](#page--1-0) was applied after the geometrical optimization to calculate phonons, including the longitudinal optical/transverse optical (LO/TO) splitting. A convergence of the calculated phonon frequencies was better than 1 cm^{-1} .

3. Results and discussion

Table 1 shows the calculated lattice parameters and fractional atomic coordinates of the $OSSi₂$ in this study, compared with those obtained from previous experiments [\[12\].](#page--1-0) The difference in the three lattice parameters a, b , and

c, between the calculated values herein and those obtained from previous experiments are -0.8% , -0.9% , and -0.9% , respectively, within the range of typical errors in LDA. The calculated fractional atomic coordinates (x, y, z) of the Os_I, Os_{II} , Si_I, and Si_{II} atoms are consistent with previous experimental results [\[12\]](#page--1-0).

[Fig. 2](#page--1-0) shows the calculated phonon dispersion relations of OsSi₂. The special high-symmetry points of the Brillouin zone (BZ) are denoted by $\Gamma(0, 0, 0)$, $Z(0, 0, 0.5)$, $T(-0.5, 0.5)$ 0.5, 0.5), $Y($ – 0.5, 0.5, 0), $S(0, 0.5, 0)$, and R (0, 0.5, 0.5). The phonon frequencies are obtained at these special highsymmetry points, as well as at other intermediate points. All of the calculated phonon frequencies are positive, suggesting that the $OSSi₂$ is dynamically stable throughout the BZ. It is clear that the some frequencies at the Γ point depend strongly on direction ($\mathbf{q} \rightarrow 0$ along $\Gamma - \mathbf{Z}$, $\Gamma - \mathbf{Y}$, and Γ –S) due to the LO-TO splitting in the anisotropic OsSi₂ crystal.

[Table 2](#page--1-0) shows the calculated phonon frequencies from this study of the OsSi₂ at the Γ point. As the primitive cell contains 24 atoms, there are 72 vibrational modes at the Γ point: 3 acoustic and 69 optical. The Cmca space group has the crystal point group D_{2h} in the Schoenflies notation [\[21\].](#page--1-0) Therefore, the phonon modes of $OSSi₂$ can be classified as 3 acoustic $(B_{1u}+B_{2u}+B_{3u})$, 36 Raman-active $(9A_g+9B_{1g}+9B_{2g}+9B_{3g})$, 25 IR-active ($9B_{1u} + 9B_{2u} + 7B_{3u}$), and 8 silent modes ($8A_u$) [\[13,22\]](#page--1-0). The IR-active phonon mode frequencies (B_{1u} , B_{2u} , and B_{3u}) are split by the LO–TO splitting, which is computed based on the dynamic Born effective charge [\[23\]](#page--1-0).

The calculated dynamic Born effective charge tensors (Z^*) and static Mulliken charges for the Os_I, Os_{II}, Si_I, and Si_{II} of the $OSSi₂$ are shown in [Table 3.](#page--1-0) All of the off-diagonal components of the Z^* for Os_I, Os_{II}, Si_I, and Si_{II} come to zero or negligible values. On the other hand, the diagonal elements of the Z^* for the Os_I, Os_{II}, Si_I, and Si_{II} are not symmetric $(Z^*_{xx} \neq Z^*_{yy} \neq Z^*_{zz})$ and have large values,

Table 1

Comparison between OsSi₂'s structural properties calculated in this study with those obtained in previous experiments [\[12\].](#page--1-0) The deviations from the experimental data are shown in parentheses.

Structural parameters			Calculated	Experimental $[12]$
Cell parameters	$a(\AA)$		10.0660 (-0.8%)	10.1496
	b(A)		$8.0445 (-0.9%)$	8.1168
	c(A)		$8.1487(-0.9%)$	8.2230
	$V(\AA^3)$		659.85 $(-2.6%)$	677.43
Atomic coordinates	Os _I (8d)		x 0.2147	0.2142
		y	$\bf{0}$	0
		Z	Ω	Ω
	Os_{II} (8 f) x 0			Ω
		$\mathcal V$	0.1881	0.1881
		$\overline{}$	0.1818	0.1812
	SiI (16 g)	χ	0.3717	0.3699
		$\mathcal V$	0.2222	0.2208
		Z	0.0588	0.0591
	Si _{II} (16 g)	χ	0.1270	0.1280
		$\mathcal V$	0.0526	0.0534
		$\overline{}$	0.7241	0.7252

Download English Version:

<https://daneshyari.com/en/article/728059>

Download Persian Version:

<https://daneshyari.com/article/728059>

[Daneshyari.com](https://daneshyari.com)