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a b s t r a c t

We present a general model (SMIM) specifically designed for the interpretation of NMR velocimetry data.
Extending the well-known concept of Mobile/Immobile tracer particles applied in dispersion theory, we
reproduce two mechanisms responsible for non-Gaussian behavior: immobile molecules trapped in non-
flowing zones, and unexpectedly long but rare displacements. From the derived analytical expressions of
the NMR signals fitted to the recorded data, we can determine a generalized dispersion coefficient in the
case of super dispersion. Using NMR velocimetry data collected in a homogeneous 30 lm grain pack and
10 < Pe < 35, we quantified the observed weak super dispersion in saturated conditions, and the strong
super-dispersion observed during steady-state oil–water two phase flow.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Dispersion in porous media has been studied for a long time
from breakthrough curves using a tracer [1]. Typically, one moni-
tors at the outlet of a porous medium the spreading of a spike of
tracer (a miscible fluid) injected at the inlet. In the simplest case
(normal dispersion), the concentration vs. time curve is Gaussian
and analyzed using an advection–dispersion equation (ADE) to
obtain a dispersion coefficient D. It is well known that such
approach is limited to homogeneous porous media. The Pulsed
Field Gradient (PFG) NMR method is much more direct since the
distribution of molecule displacements (propagator) is measured.
Indeed the variance (or second moment) of this distribution is
directly linked to the dispersion coefficient D without any assump-
tion. This property has been used by many authors and results
from both methods give comparable results (see [2] for a compila-
tion of results), although NMR tend to give lower D values. This
simple approach does not apply in porous media with a complex
structure such as double porosity carbonates [3], or in two phase
flows performed in homogeneous systems [4]. Here, D varies in
time and space. In such cases, models containing more parameters
need to be used in order to correctly reproduce the tracer displace-
ment and as a consequence, more experimental information is
necessary. For tracer experiments, this implies that the space
dependence of the concentration vs. time must be acquired, and

for NMR, the time dependence of propagators should be analyzed.
For NMR, this time dependence is naturally examined and if the
variance r2 does not vary linearly with time, D will not be unique
and depend on time. This means that we cannot characterize the
porous medium with a unique dispersion coefficient.

In this work, we propose to extend the standard second
moment NMR analysis and exploit all information contained in
PFG-NMR experiments. Indeed, the second moment derived from
the NMR signal only takes into account small wave numbers. Alter-
natively, fitting the propagator with Gaussian or non-Gaussian
models is strongly affected by the way the Fourier transform is per-
formed. Thus, in order to avoid these deficiencies the best way to
simulate super-dispersion is to build a model predicting directly
the PFG-NMR signal. This is indeed the case when using numerical
methods such as CTRW stochastic models (see [1] for a general
presentation) in which the details of the porous media are not rep-
resented. Instead the probability of a displacement is taken from
various probability density functions designed to reproduce phys-
ical effects. For example, molecules may be trapped in non-flowing
zones and this may be expressed as a larger probability of zero
displacement compared to the Gaussian case. The approach pre-
sented here uses similar concepts without the need for numerical
simulations.

2. Theory

The proposed model is very general and attempts to reproduce
two important mechanisms: (i) the possibility for a molecule to be
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temporarily trapped in non-flowing zones and (ii) the possibility
for a molecule to travel large distances due to for example a highly
contrasted velocity field. Hence, we reproduce deviations from the
Gaussian case either by modifying the short or long displacement
tails on both sides of the distribution. Empirical choices for repre-
senting these mechanisms were made: for the first mechanism, the
well-known Mobile–Immobile concept is used [1], and for the sec-
ond mechanism, the idea of Levy motions is exploited with the
important advantage that it includes the Gaussian case. The model
is called SMIM, an acronym for space fractional Mobile Immobile
Model. It is not the purpose of this short document to give the
tedious details of the theory presented elsewhere [5]. The complex
PFG-NMR signal is given by the following analytical expressions:
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where q is the NMR wave number (q = cdg, product of the gyromag-
netic ratio, pulse length and amplitude respectively). The model has

5 parameters D, a, K, x, v and an auxiliary parameter M with the fol-
lowing significance:

D: generalized dispersion coefficient [ma/s],
a: stability exponent of the Levy distribution,
K: ratio of average immobile to mobile times,
x: parameter describing the distribution of immobile times

(exponential function),
v: average velocity while moving (thus larger than the

measured average velocity),
M: a parameter describing memory effects.
Since no further details are given about these parameters, it is

also useful to present the partial differential equation describing
tracer experiments to understand how the standard ADE equation
is modified:
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The parameter a is present in the fractional derivative of order a
(definition given in [5]), and the trapping mechanism is identified
by a supplementary term in the time derivative (the symbol * indi-
cates a convolution). When a = 2 and K = 0, Eq. (2) corresponds to
the standard ADE. The possibility of reproducing a large variety of
shapes with SMIM is shown in Fig. 1. We illustrate the two mecha-
nisms mentioned above by setting first no immobile molecules
(K = 0) and varying a. In this case, Fig. 2 we see gradually the forma-
tion of a tail at large displacements as a decreases. In the second
example, we set a = 2 and vary K, the ratio of average immobile to
mobile times. We see a gradual increase of the peak at zero dis-
placement. Varying x simultaneously would result in a larger or
smaller width of this peak. If we combine both mechanisms, we
modify simultaneously the large and small displacement tails. Note
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Fig. 1. Example of propagators obtained from SMIM. Left: effect of a with D = 0.5 cma/s, v = 0.1 cm/s with no immobile time (K = 0). Right: effect of K with D = 0.5 cm2/s, a = 2,
v = 0.1 cm/s, x = 1 s�1, M = 0.5.
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Fig. 2. Examples of complex NMR signals in q space, corresponding to 2 propagators shown in Fig. 1. Left: a = 1.5, D = 0.5 cma/s, v = 0.1 cm/s (K = 0). Right: K = 0.3, D = 0.5 cm2/
s, a = 2, v = 0.1 cm/s, x = 1 s�1, M = 0.5.
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