Contents lists available at ScienceDirect

Materials Science in Semiconductor Processing

journal homepage: www.elsevier.com/locate/mssp

Structure and magnetic properties evolution of cobalt–zinc ferrite with lithium substitution

Yuan Zhou^a, Xuehang Wu^a, Wenwei Wu^{a,b,*}, Xusheng Huang^c, Wen Chen^a, Yulin Tian^a, Dan He^a

^a School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China

^b Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning 530004, PR China

^c Guangxi Zhuang Autonomous Region Metallurgical Products Quality Supervision and Test Station, Nanning 530023, PR China

ARTICLE INFO

Article history: Received 24 June 2015 Received in revised form 13 August 2015 Accepted 14 August 2015

Keywords: Magnetic materials Chemical synthesis X-ray diffraction Magnetic properties

ABSTRACT

Li_xCo_{0.5}Zn_{0.5-x}Fe₂O₄ ($0.0 \le x \le 0.3$) is obtained by calcining precursor oxalates at 900 °C in air. The precursor and its calcined products are characterized by thermogravimetry and differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, and vibrating sample magnetometer. A high-crystallized Li_xCo_{0.5}Zn_{0.5-x}Fe₂O₄ with a cubic structure is obtained when the precursor is calcined at 900 °C in air for 3 h. Lattice parameters decrease with the increase of Li⁺ addition amount. The magnetic properties of Li_xCo_{0.5}Zn_{0.5-x}Fe₂O₄ depend on Li⁺ doped amount and calcination temperature. Li_{0.3}Co_{0.5}Zn_{0.2}Fe₂O₄ obtained at 900 °C has the highest specific saturation magnetization value, 70.24 emu/g. However, Li_{0.3}Co_{0.5}Zn_{0.2}Fe₂O₄ obtained at 800 °C has the highest remanence (8.29 emu/g) and coercivity value (97.8 Oe).

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Cobalt ferrite (CoFe₂O₄) with inverse spinel structure is a wellknown hard magnetic material, which has many unique properties, such as high coercivity, large magnetocrystalline anisotropy, moderate specific saturation magnetization, high mechanical hardness, high chemical stability, and high Curie temperature (~520 °C). Thus, CoFe₂O₄ has been widely used as audio and videotape, high-density digital recording disks, magnetic separation, ferrofluids, catalysts, magnetic resonance imaging, gas sensor, and drug targeting [1–11], etc. The doped CoFe₂O₄ can improve its magnetic performance. Therefore, doped CoFe₂O₄ caused great concern.

Various synthetic approaches have been pursued to prepare spinel $CoFe_2O_4$ and doped $CoFe_2O_4$ with different particle sizes and morphological features, including solid-state reaction at low temperatures [1–3], sol–gel synthesis [4,6,12–14], co-precipitation [5,15,16], hydrothermal treatment [7,17], ball milling method [8,18,19], ceramic method [20,21], citrate precursor method [22,23], solvothermal method [24,25], microwave combustion method [26,27], and polyol process [28]. The crystallite diameter, morphology, and crystalline phases of $CoFe_2O_4$ associated with its

performances highly depend on the synthesis method, calcination temperature, and doping elements. Lopes-Moriyama et al. [29] synthesized nano-octahedral grains of cobalt ferrite (CoFe₂O₄) with size around 20 nm by a hydrothermal route. Jia et al. [24] synthesized $Co_{1-x}Zn_xFe_2O_4$ nanorods by the solvothermal annealing method. Co_{1-x}Zn_xFe₂O₄ has the maximal specific saturation magnetization value, 43.0 emu g⁻¹. Singhal et al. [14] prepared $Co_{0.5}Zn_{0.5}Al_xFe_{2-x}O_4$ nanoparticles via sol-gel route. The results showed that Co_{0.5}Zn_{0.5}Fe₂O₄ obtained at 1000 °C had the highest specific saturation magnetization value, 64.33 emu/g; Co_{0.5}Zn_{0.5}AlFeO₄ had the highest coercivity value, 162 Oe. Although many researchers have made great efforts to prepare single phase $Co_{1-x}Zn_xFe_2O_4$ with high performance, facile and scalable synthesis of $Co_{1-x}Zn_xFe_2O_4$ with high specific saturation magnetization, higher coercivity, and lower remanence values is still a significant challenge. Therefore, it is highly desirable and necessary to explore new synthetic methods for the preparation of $Co_{1-x}Zn_xFe_2O_4$ and/or doped $Co_{1-x}Zn_xFe_2O_4$. To the best of our knowledge, the synthesis and magnetic properties of $Li_xCo_{0.5}Zn_{0.5-x}Fe_2O_4$ by thermal decomposition of oxalates has rarely been reported in previous studies.

This study aims to prepare $Li_xCo_{0.5}Zn_{0.5-x}Fe_2O_4$ by calcining oxalates in air and study effect of composition and calcination temperature on magnetic properties of $Li_xCo_{0.5}Zn_{0.5-x}Fe_2O_4$. Our results clearly show that the magnetic properties, in particular the specific magnetizations (*Ms*) and coercivity (*Hc*) of $Li_xCo_{0.5}Zn_{0.5-x}Fe_2O_4$, can be precisely tailored by controlling Li⁺

^{*} Corresponding author at: School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China. Fax: +86 771 3233718.

E-mail addresses: gxuwuwenwei@aliyun.com, wuwenwei@gxu.edu.cn (W. Wu).

doped amount and calcination temperature.

2. Experimental

2.1. Reagent and apparatus

All chemicals used are of reagent-grade purity (purity > 99.9%). The TG/DSC measurements were conducted using a Netzsch Sta 409 PC/PG thermogravimetric analyzer under continuous flow of air (35 mL min⁻¹). The sample mass was approximately 12 mg. X-ray powder diffraction (XRD) was performed using a X'pert PRO diffractometer equipped with a graphite monochromator and a Cu target. The radiation applied was Cu K α (λ =0.15406 nm), operated at 40 kV and 50 mA. The XRD scans were conducted from 5° to 70° in 2 θ , with a step size of 0.01°. The morphologies of the synthesis products were observed using a S-3400 scanning electron microscope (SEM). The specific saturation magnetizations (*Ms*) of the calcined sample powders were carried out at room temperature using a vibrating sample magnetometer (Lake Shore 7410).

2.2. Preparation of $Li_xCo_{0.5}Zn_{0.5-x}Fe_2O_4$

The Li_xCo_{0.5}Zn_{0.5-x}Fe₂O₄ (x=0, 0.1, 0.2, and 0.3) samples were prepared by calcining precursor oxalates in air using Li₂C₂O₄, CoC₂O₄ · 2H₂O, ZnC₂O₄ · 2H₂O, and FeC₂O₄ · 2H₂O as raw materials. In a typical synthesis (Co_{0.5}Zn_{0.5}Fe₂O₄), CoC₂O₄ · 2H₂O (4.62 g), ZnC₂O₄ · 2H₂O (4.78 g), and FeC₂O₄ · 2H₂O (18.15 g) were placed in a mortar, and the mixture was thoroughly ground by hand with a rubbing mallet for 35 min. The strength applied was moderate. The resulting material was determined to be 0.5CoC₂O₄-0.5ZnC₂O₄-2FeC₂O₄ · 7.32H₂O by TG and inductively coupled plasma atomic emission spectrometry. A similar synthesis procedure was used to synthesize other Li_xCo_{0.5}Zn_{0.5-x}Fe₂O₄ precursor. Cubic Li_xCo_{0.5}Zn_{0.5-x}Fe₂O₄ was obtained by calcining the precursor at 900 °C in air for 3 h.

3. Results and discussion

3.1. Composition analysis of the precursor

0.0310 g precursor sample was dissolved in 10 mL 50 vol% HCl solution, then diluted to 100.00 mL with deionized water. Cobalt (Co), zinc (Zn), and ferrum (Fe) in the solution were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES, Perkin Elmer Optima 5300 DV). The results showed that the Co, Zn, and Fe mass percentage were 5.17%, 5.74%, and 19.60%, respectively. In other words, molar ratio of Co:Zn:Fe in the

precursor is 0.5:0.5:2.00.

3.2. TG/DSC/DTG analysis of the precursor

Fig. 1 shows the TG/DSC/DTG curves of the precursor at a heating rate of 10 °C min⁻¹. The TG/DSC/DTG curves show that the thermal transformation of 0.5CoC₂O₄-0.5ZnC₂O₄-2FeC₂O₄ · 7.32H₂O below 900 °C occurred in five well-defined steps. The first step started at about 126.2 °C and ended at 157.1 °C, which can be attributed to the dehvdration of the one water from 0.5CoC₂O₄-0.5ZnC₂O₄-2FeC₂O₄·7.32H₂O (mass loss: observed, 3.22%: theoretical, 3.16%). The second transformation step started at 157.1 °C and ended at 220.1 °C. attributed to the dehydration of the 6.32 waters from 0.5CoC₂O₄-0.5ZnC₂O₄-2FeC₂O₄ · 6.32H₂O (mass loss: observed, 20.18%; theoretical, 19.98%). The third transformation step started at 220.1 °C and ended at 265.2 °C, attributed to the reaction of 2FeC₂O₄ with 1.5O₂ into Fe₂O₃ and the four CO₂ molecules (mass loss: observed, 21.62%; theoretical, 22.47%). The fourth transformation step started at 265.2 °C and ended at 316.5 °C, attributed to the reaction of 0.5CoC₂O₄ with 1/3O₂ into 0.5/3Co₃O₄ and the one CO₂ (mass loss: observed, 6.16%; theoretical, 5.85%). The fifth transformation step started at 316.5 °C and ended at 392.9 °C, attributed to the reaction of 0.5/3Co₃O₄ and 0.5ZnC₂O₄ with 1/6O₂ into 0.5CoO, 0.5ZnO, and one CO2 (mass loss: observed, 6.96%; theoretical, 6.79%).

3.3. XRD analyses of the calcined products

Fig. 2 shows the XRD patterns of calcined samples from different calcination temperatures for 3 h. Fig. 2a shows that part of characteristic diffraction peaks of cubic ZnFe₂O₄ appeared when $Li_xCo_{0.5}Zn_{0.5-x}Fe_2O_4$ precursor (x=0 and 0.1) was calcined at 700 °C. Characteristic diffraction peaks of cubic ZnFe₂O₄ become strong and those of impurity (Fe₂O₃, ZnO, and/or Co₃O₄) become weak and/or disappear with the increase of calcination temperature. When the precursor was calcined at 900 °C, all other diffraction peaks in the pattern agreed with those of cubic ZnFe₂O₄ with space group Fd-3m (227) from PDF card 22-1012 except for one weak diffraction peak of rhombohedral Fe₂O₃ at 33.05 for 2θ . No diffraction peaks of crystalline CoFe₂O₄ were observed, which implied that ZnFe₂O₄ and CoFe₂O₄ formed a solid solution. Fig. 2c and d shows that single phase CoFe₂O₄ with cubic structure [space group Fd-3m (227)] can be obtained when $Li_xCo_{0.5}Zn_{0.5-x}Fe_2O_4$ (x=0.2 and 0.3) precursor was calcined at 900 °C. No diffraction peaks of crystalline ZnFe₂O₄ and/or Li_{0.5}Fe_{2.5}O₄ were observed, implying that ZnFe₂O₄, Li_{0.5}Fe_{2.5}O₄, and CoFe₂O₄ formed a solid solution. The lattice parameters of the sample were refined by the Rietveld analysis using MDI Jade (ver. 5.0) software. The refined lattice parameters of Li_xCo_{0.5}Zn_{0.5-x}Fe₂O₄ obtained at 900 °C were a=b=c=0.843901 nm for x=0; a=b=c=0.840565 nm for x=0.1;

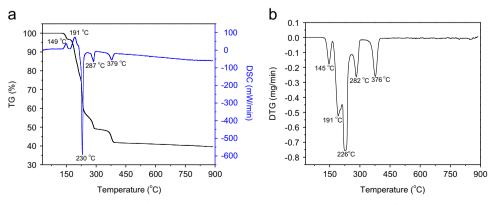


Fig. 1. TG/DSC/DTG curves of 0.5CoC₂O₄-0.5ZnC₂O₄-2FeC₂O₄·7.32H₂O at a heating rate of 10 °C/min in air.

Download English Version:

https://daneshyari.com/en/article/728171

Download Persian Version:

https://daneshyari.com/article/728171

Daneshyari.com