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ABSTRACT

There is a broad family of statistical methods for capturing time series regularity, with increasingly widespread
adoption by the neuroscientific community. A common feature of these methods is that they permit investigators
to quantify the entropy of brain signals — an index of unpredictability/complexity. Despite the proliferation of
algorithms for computing entropy from neural time series data there is scant evidence concerning their relative
stability and efficiency. Here we evaluated several different algorithmic implementations (sample, fuzzy, dis-
persion and permutation) of multiscale entropy in terms of their stability across sessions, internal consistency
and computational speed, accuracy and precision using a combination of electroencephalogram (EEG) and
synthetic 1/f noise signals. Overall, we report fair to excellent internal consistency and longitudinal stability
over a one-week period for the majority of entropy estimates, with several caveats. Computational timing es-
timates suggest distinct advantages for dispersion and permutation entropy over other entropy estimates.
Considered alongside the psychometric evidence, we suggest several ways in which researchers can maximize
computational resources (without sacrificing reliability), especially when working with high-density M/EEG

data or multivoxel BOLD time series signals.

1. Introduction

Recordings of population-level brain activity exhibit frequent state
transitions and substantial moment-to-moment variability across a
broad array of measurement modalities (e.g., electrocorticography
[ECoG], electroencephalography [EEG], magnetoencephalography
[MEG], functional magnetic resonance imaging [fMRI]) (Deco, Jirsa, &
MeclIntosh, 2013; Friston, 1997; Garrett et al., 2013). In conventional
terms, intraindividual brain signal variability has often been treated as
a nuisance factor arising from exogenous or endogenous sources (“brain
noise”) that investigators attempt to minimize by using estimates of
central tendency (e.g., averaged amplitudes of brain signals). An al-
ternative framework, with increasing theoretical and empirical support,
focuses on modeling variability as a means of facilitating the explora-
tion of a broader manifold of functional network states (Deco et al.,
2013; Deco & Corbetta, 2011; Tognoli & Kelso, 2014). Viewed from this
perspective, it is not only that nervous systems have evolved to be able
to tolerate noise, but under some circumstances the nervous system
may actively exploit noise to optimize adaptability in uncertain en-
vironments (Faisal, Selen, & Wolpert, 2008; McDonnell & Ward, 2011;
Sejdi¢ & Lipsitz, 2013). By comparison, system pathology can be

conceptualized as a reduction in degrees of freedom, generating activity
that is more regular over numerous time scales as suggested by the
complexity loss theory of disease and aging (Pincus & Goldberger,
1994; Yang & Tsai, 2013). Recent findings demonstrate that this loss of
large-scale brain signal variability in cognitive aging is partially ex-
plained by reductions of dopaminergic neurotransmission (Garrett
et al., 2015; Guitart-Masip et al., 2016). Quantifying the temporal
structure of variability that is inherent in a system’s output can there-
fore provide a useful estimate concerning the size of its dynamical re-
pertoire (Garrett et al., 2017; McDonough & Nishira, 2014; Misic,
Vakorin, Paus, & McIntosh, 2011).

Practical advances in information theory and signal processing have
enabled neuroscientists to quantify the diversity of patterns present in
physiological signals using a metric of uncertainty known as entropy
(Peng, Costa, & Goldberger, 2009; Richman & Moorman, 2000; Vakorin
& Meclntosh, 2012). In this context, entropy captures the unpredict-
ability of time series data — patterns with low predictability are assigned
high entropy, while ordered, regular signals (e.g., pure sine waves)
contain very little entropy. One consequence of quantifying the tem-
poral complexity of neural time series data in this manner is that the
procedure always assigns higher entropic values to signals with greater
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randomness. A hallmark feature of brains as complex systems, however,
is that they operate in a middle zone between the extremes of order and
randomness, reflecting dynamics that are constrained by a structural
backbone with a mixture of deterministic and stochastic elements
(Pedersen, Omidvarnia, Walz, Zalesky, & Jackson, 2017; Sporns, 2013;
Tononi, Edelman, & Sporns, 1998). The major advantage of multiscale
measures of brain signal variability is that they can reveal system dy-
namics across a range of time scales, in contrast to conventional esti-
mates of sample entropy at a single timescale factor or related techni-
ques (e.g., PCA dimensionality).

To capture the fact that information content in physiological signals
is expressed over multiple time scales, Costa et al. (2002, 2005) pro-
posed a multiscale extension of entropy that is sensitive for long-range
correlation structure in time series data and assigns higher temporal
complexity estimates for signals that are neither completely ordered nor
completely random. Application of multiscale methods produces a
profile of system dynamics as revealed in entropy curves extending over
a range of transient time scales. Since their introduction, multiscale
entropy analyses have found growing popularity within the neu-
roscientific community with application to signals collected from var-
ious recording modalities and subject populations (see Garrett et al.,
2013, for a review). An advantage of multiscale entropy over more
conventional power spectral density (PSD) analyses is that the latter
reflect only the linear stochastic properties of signals while the former
permit investigators to also index non-linear deterministic correlations
present in neural time series (Courtiol et al., 2016; Vakorin & McIntosh,
2012).

Within the past few years, a number of novel entropy-based mea-
sures of time series variability have appeared in the literature: fuzzy
entropy (Azami & Escudero, 2017), dispersion entropy (Rostaghi &
Azami, 2016) and permutation entropy (Bandt & Pompe, 2002), along
with their multiscale versions, are a few of the commonly used metrics.
Each of these algorithms differs in its computational details (for a
comprehensive technical background, readers are referred to the ori-
ginal sources) and purports to provide some refinement over conven-
tional measures of sample entropy, either in terms of improved pro-
cessing efficiency, accuracy, precision or some combination of factors.
It is important to note that, although all of these various measures share
the goal of quantifying time series irregularity/unpredictability, their
use reflects different assumptions and they may have different prop-
erties in applied settings — for instance, a specific quantitative index of
entropy might be more or less sensitive to non-linearities present in
brain signals.

Given the high throughput nature of large-scale neuronal record-
ings, establishing benchmark data on relative performance across sev-
eral commonly used multiscale entropy metrics could provide practical
guidance to researchers looking to optimize limited computing re-
sources. The computational complexity of the traditional sample en-
tropy algorithm OW?),' for example, is substantially higher when
compared to permutation or dispersion entropy (O(N)). Such con-
siderations have non-trivial consequences for informing data analysis
strategies — at 1 kHz acquisition rates, one minute of continuous high-
density EEG data can contain up to > 1.53 x 10° sample points, an
amount that could quickly impose a resource allocation bottleneck in a
typical laboratory. However, computational burden is not the only re-
levant factor to consider when designing a sensible data processing
pipeline, especially if distinct metrics exhibit markedly divergent re-
sults when applied to neural time series data, or if one has unacceptable
psychometric properties such as poor stability, internal consistency or
low precision.

Despite the growing popularity of brain signal variability measures
in the study of learning and memory (Heisz, Shedden, & McIntosh,

1 This notation (referred to as either Landau or Big O notation) refers to the way the
time and/or memory required to perform a calculation scales with the size of the input.
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2012, 2014; Lafontaine et al., 2016), development/aging (Heisz, Gould,
& MeclIntosh, 2015; Lippé, Kovacevic, & McIntosh, 2009; McIntosh,
Kovacevic, & Itier, 2008, 2014; Misi¢, Mills, Taylor, & McIntosh, 2010;
Miskovic, Owens, Kuntzelman, & Gibb, 2016; Takahashi et al., 2009;
Vakorin, Lippé, & McIntosh, 2011; Wang, McIntosh, Kovacevic,
Karachalios, & Protzner, 2016; Yang et al., 2013), neuropsychiatric
pathology (Bosl, Tierney, Tager-Flusberg, & Nelson, 2011; Catarino,
Churches, Baron-Cohen, Andrade, & Ring, 2011; Escudero, Abasalo,
Hornero, Espino, & Lopez, 2006; Misi¢, Dunkley et al., 2016; Takahashi
et al,, 2016; Yang et al., 2015), neurostimulation (Farzan, Pascual-
Leone, Schmahmann, & Halko, 2016; Okazaki et al., 2013) and resting
state fMRI networks (McDonough & Nishira, 2014; Smith, Yan, & Wang,
2014; Yang et al., 2014), very little is known about the stability of
entropy derived from neural time series recordings.

Our goal here was to provide benchmark information that can guide
the implementation of reliable and efficient data processing strategies
for investigators who wish to quantify the multiscale variability of brain
signals. We used a combination of empirical scalp EEG recordings and
synthetic EEG-like time series signals to compare and contrast several
commonly used metrics of multiscale entropy along several different
desiderata: reliability (one-week stability), internal consistency, com-
putational speed, accuracy, and precision. Ultimately, a researcher’s
decision to use one or another of these metrics ought to be guided by
the nature of the research question and ideally convergence across
metrics will be sought — here, we simply wished to provide some re-
levant information that might inform the design of data analytic stra-
tegies. Our analyses focused on recordings of intrinsic brain activity,
which is likely to provide a more stringent evaluation of metric stabi-
lity, since we are capturing spontaneous cortical dynamics that are
unconstrained by external inputs or tasks. In addition, the recording of
ongoing, endogenous brain signals allowed us to evaluate the stability
of entropy estimates over a somewhat wider range of temporal scales
than would be possible with shorter, event- or response-locked seg-
ments of neural time series.

2. Method
2.1. Participants

A total of eighteen undergraduate students at SUNY Binghamton
(ages 18-22, mean = 18.93, SD = 1.28, 11 female) participated in at
least the first of two EEG recording sessions separated by exactly one
week, such that an individual’s session began at the same time on each
day in order to control for possible circadian fluctuations (Ly et al.,
2016). All recordings took place roughly between the hours of 12:00
and 4:00P.M. One participant did not return for the second session and
data from two participants’ second sessions were not properly recorded,
leaving a total of fifteen participants who provided usable data at both
time points. The participants included here were part of a larger ex-
perimental study, the results of which are not further described in this
paper. The resting state recordings that are the focus of analysis here
preceded the experimental procedures.

2.1.1. Procedures and electrophysiological recording

Participants were greeted and informed about the experimental
procedures. Following the completion of a written consent and pre-
liminary paperwork associated with the behavioral experiment, parti-
cipants were ushered into a dimly lit EEG recording room equipped
with a white noise generating sound screen. Nasion-inion and pre-
auricular anatomical measurements were made to locate and mark each
individual’s vertex site. Participants were then fitted with a 128 elec-
trode (plus Cz reference) Electrical Geodesics, Inc. (EGI) HydroCel
Geodesic Sensor Net. The target electrode impedances were at or below
60 kOhm at recording onset. Each session consisted of a four-minute
resting period with eyes closed. Participants were seated in front of a
computer monitor and instructed to close their eyes when a fixation
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