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A B S T R A C T

The accurate diagnosis and assessment of neurodegenerative disease and traumatic brain injuries (TBI) remain
open challenges. Both cause cognitive and functional deficits due to focal axonal swellings (FAS), but it is
difficult to deliver a prognosis due to our limited ability to assess damaged neurons at a cellular level in vivo. We
simulate the effects of neurodegenerative disease and TBI using convolutional neural networks (CNNs) as our
model of cognition. We utilize biophysically relevant statistical data on FAS to damage the connections in CNNs
in a functionally relevant way. We incorporate energy constraints on the brain by pruning the CNNs to be less
over-engineered. Qualitatively, we demonstrate that damage leads to human-like mistakes. Our experiments also
provide quantitative assessments of how accuracy is affected by various types and levels of damage. The deficit
resulting from a fixed amount of damage greatly depends on which connections are randomly injured, providing
intuition for why it is difficult to predict impairments. There is a large degree of subjectivity when it comes to
interpreting cognitive deficits from complex systems such as the human brain. However, we provide important
insight and a quantitative framework for disorders in which FAS are implicated.

1. Introduction

The mathematical architecture of convolutional neural networks
(CNNs) was originally inspired by the Nobel prize-winning work of
Hubel and Wiesel on the primary visual cortex of cats (Hubel & Wiesel,
1962). Their seminal experiments were the first to suggest that neurons
in the visual system organize themselves in hierarchical layers of cells
for processing visual stimulus. The first quantitative model of the CNN,
termed the Neocognitron by Fukushima (1980), already displayed
many of the characteristic features of today’s deep CNNs, including a
multi-layer structure, convolution, max pooling and nonlinear dyna-
mical nodes. The connection between neuroscience and CNN theory,
although clearly a conceptional abstraction (Poggio, 2016a), has since
been instrumental to improving quantitative models of how the brain
integrates neuro-sensory information for stimulus classification and
decision making. Given that CNNs mimic many of the important cog-
nitive features of the brain, we use it as a model for understanding how
neurodegenerative diseases and traumatic brain injuries (TBI) can
compromise an array of recognition tasks. Specifically, by using well-
established biophysical data on the statistics (distribution and size) of
focal axonal swellings (FAS), which are among the primary symptoms
of neurodegeneration and TBI, we evaluate the progress of impairments
on a CNN-based model of cognition. Our model provides quantitative

metrics for understanding how cognitive deficits are accumulated as a
function of FAS development, allowing for potentially new diagnostics
for the evaluation of brain disorders due to neurodegenerative diseases
and/or TBI.

Understanding how neurodegenerative diseases and TBI affect
cognitive function remains a critically important challenge for societal
mental health. TBI alone is one of the major causes of disability and
mortality worldwide, which in turn, dramatically jeopardizes society in
several socioeconomic ways (Menon & Maas, 2015). Not only is it the
signature injury of the wars in Afghanistan and Iraq (Jorge et al., 2012),
it is also the leading cause of death among young people (Faul, Xu,
Wald, & Coronado, 2010). While many survive the events that induce
TBI, persistent cognitive, psychiatric, and physiological dysfunction
often follows from the mechanical impact (see Section 2). Likewise,
neurodegenerative diseases are responsible for an overwhelming
variety of functional deficits, with common symptoms including
memory loss or behavioral/cognitive impairments which are related to
an inability to correctly process multi-modal information for decision-
making tasks. The majority of brain disorders have a complex cascade
of pathological effects spanning multiple spatial scales: from cellular or
network levels to tissues or entire brain areas. Unfortunately, our lim-
ited ability to diagnose cerebral malfunctions in vivo cannot detect
several anomalies that occur on smaller scales. FAS, however, are
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ubiquitous to TBI and most leading and incurable disorders that dra-
matically affect signaling properties of neurons, such as Multiple
Sclerosis, Alzheimer’s and Parkinson’s diseases.

Given the currently available wealth of data on FAS morphology
from TBI studies and from almost every leading neurodegenerative
disease, significant progress can be made towards understanding qua-
litatively how FAS impacts cognitive function. In this work, we consider
a set of deep CNN models as an abstraction for functioning brains. Our
goal is to understand how the processing of input data (classification) is
compromised as a function of increasing injury and/or disease pro-
gression. Of course, it is obvious that the system’s performance will be
compromised as the CNN is injured, but the manner in which the cog-
nitive impairments arise is quite illustrative and informative, providing
intuitively appealing results about how cognitive deficits can develop
and evolve as a neurodegenerative disease progresses.

Fig. 1 illustrates our approach. We begin with the original (healthy)
CNN, which is trained to perform a classification task. In Fig. 1, the
specific task is to label a handwritten digit. We then expose the CNN to
different injury protocols based upon biophysical observations of FAS
statistics and morphological parameters. In particular, we use statistical
distributions of FAS from a recent experiment consisting of TBI-induced
damage in the visual cortex of rats (Wang, Hamm, & Povlishock, 2011).
To impose these injury statistics on the original CNN, we assume that
each neuronal connection has a biophysically plausible probability to
malfunction; while mild axonal injury may simply weaken a connec-
tion, severe cases may break it permanently (i.e., an axomtotomy occurs
so that the connection strength goes to zero). Ultimately, the severity of
the injury and re-weighting of connections is also determined by bio-
physical data and the statistical distribution of the size of the FAS. We
can then progressively monitor the deleterious effects of the injury on
the functionality of the CNN, providing metrics for cognitive deficits
that arise.

The paper is outlined as follows: In Section 2 we provide key
background material on the two primary fields integrated into this
work: convolutional neural networks and neural disorders in which FAS
are implicated. We describe our methodology in Section 3 and present
results in Section 4. We summarize our conclusions in Section 5. For full
details, all MATLAB and Python codes used for this paper are available
online at http://github.com/BethanyL/damaged_cnns.

2. Background

2.1. Convolutional neural networks

Deep learning is transforming almost every field of science invol-
ving big data. The success of the method has been enabled by two
critical components: (i) the continued growth of computational power
(e.g. GPU and networked computing), and (ii) exceptionally large la-
beled data sets capable of taking advantage of the full power of a multi-
layer architecture (Goodfellow, Bengio, & Courville, 2016).

Deep learning has experienced a resurgence in popularity since
2006. However, it was a topic of intensive research long before. Indeed,
neural networks were highly successful in a wide range of applications
and machine learning architectures Goodfellow et al. (2016). By the
early 1990s, they were studied as standard textbook material (Bishop,
1995), with the focus typically on a small number of layers. Im-
portantly, there were a number of critical innovations which estab-
lished multilayer feedforward networks as a class of universal approx-
imators. Specifically, Hornik, Stinchcombe, and White (1989)
rigorously established that standard multilayer feedforward networks
with as few as one hidden layer using arbitrary squashing functions
were capable of approximating any Borel measurable function from one
finite dimensional space to another to any desired degree of accuracy,
provided sufficiently many hidden units were available. Thus, multi-
layer feedforward networks could be thought of as a class of universal
approximators (Hornik et al., 1989).

There is a recent but very large body of papers in which CNNs are
used to study human brain function. Yamins, Hong, Cadieu, and
DiCarlo (2013), for instance, used CNNs to model the ventral stream as
this series of cortical areas are thought to subserve object recognition.
By extending their model class to contain mixtures of deeper CNN
networks, corresponding intuitively to specialized subunits in the ven-
tral visual system, they could predict spiking responses from the in-
ferior temporal cortex with high accuracy (Yamins et al., 2014). In fact,
the same brain region was investigated by a wide range of computa-
tional model representations (Cadieu et al., 2014; Güçlü & van Gerven,
2015; Khaligh-Razavi & Kriegeskorte, 2014). DNNs were also used to
model the neural representation of music across the superior temporal
gyrus (Güçlü, Thielen, Hanke, van Gerven, & van Gerven, 2016). See
Kriegeskorte (2015), Poggio (2016b), and Yamins and DiCarlo (2016)
for recent reviews. Overall, CNNs provide a powerful platform that can
be tailored to simulate a broad array of cognitive functions within
different brain circuits.

Fig. 1. Damaging a Convolutional Neural Network (CNN). (a) We start with a “healthy” CNN that accepts an image of a handwritten digit as an input and outputs
scores for each possible digit, 0–9. We classify the image as the digit with the highest score. (b) We then damage the weights on the network in a biophysically-
relevant way. In this figure, the healthy network correctly classifies the image as a 2, but the damaged network classifies it as a 1.
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