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A B S T R A C T

Previous work suggests that humans find it difficult to learn the structure of causal systems given observational
data alone. We identify two conditions that enable successful structure learning from observational data: people
succeed if the underlying causal system is deterministic, and if each pattern of observations has a single root
cause. In four experiments, we show that either condition alone is sufficient to enable high levels of performance,
but that performance is poor if neither condition applies. A fifth experiment suggests that neither determinism
nor root sparsity takes priority over the other. Our data are broadly consistent with a Bayesian model that
embodies a preference for structures that make the observed data not only possible but probable.

1. Introduction

Causal networks have been widely used as models of the mental
representations that support causal reasoning. For example, an en-
gineer’s knowledge of the local electricity system may take the form of a
network in which the nodes represent power stations and the links in
the network represent connections between stations. Causal networks
of this kind may be learned in several ways. For example, an inter-
vention at station A that also affects station B provides evidence for a
directed link between A and B. Networks can also be learned via in-
struction: for example, a senior colleague might tell the engineer that A
sends power to B. Here, however, we focus on whether and how causal
networks can be learned from observational data. For example, the
engineer might observe that A and B both have voltage spikes on some
occasions, that B alone has voltage spikes on others, but that A is never
the only station with voltage spikes (Fig. 1). Based on these observa-
tions alone, the engineer might infer that A sends power to B.

The problem in Fig. 1 is an instance of structure learning because it
requires a choice between two distinct graph structures: one in which A
sends a link to B and the other in which B sends a link to A. Structure
learning can be distinguished from parameter learning problems that
require inferences about the properties of links in a known causal
structure (Danks, 2014; Jacobs & Kruschke, 2011). For example, an
engineer who knows that station A sends a link to station B might need
to learn about the fidelity with which signals at A are transmitted to B.
Causal parameter learning is often studied experimentally using

paradigms in which a focal effect is clearly distinguished from a set of
potential causes, and the learning problem is to infer the strength of the
relationship between each candidate cause and the effect (Lu, Yuille,
Liljeholm, Cheng, & Holyoak, 2008; Sloman, 2005). Here, however, we
focus on structure learning problems in which the variables are not
presorted into potential causes and effects.

A consensus has emerged that people find causal structure learning
to be difficult or impossible given observational data alone. For ex-
ample, Fernbach and Sloman (2009) cite results obtained by Steyvers,
Tenenbaum, Wagenmakers, and Blum (2003), Lagnado and Sloman
(2004), and White (2006) to support their claim that “observation of
covariation is insufficient for most participants to recover causal
structure” (p. 680). Here we challenge this consensus by identifying two
conditions that enable successful structure learning from observational
data alone. The first condition is causal determinism, and is satisfied if
each variable is a deterministic function of its direct causes. The second
condition is root sparsity, and is satisfied if each observation is the
outcome of a single root cause. Both conditions simplify the structure-
learning problem by reducing the number of possible explanations for a
given set of observations.

Determinism and root sparsity have both previously been discussed
in the literature on causal reasoning. Several lines of research suggest
that people tend to assume that causes are deterministic or near-de-
terministic (Frosch & Johnson-Laird, 2011; Lu et al., 2008; Schulz &
Sommerville, 2006; Yeung & Griffiths, 2015), and this assumption has
informed previous studies of structure learning (Mayrhofer &
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Waldmann, 2011; Mayrhofer & Waldmann, 2016; White, 2006). Our
work is related most closely to a previous study by White (2006), who
asked participants to learn the structure of deterministic causal systems
from observational data alone. White’s task proved to be difficult, and
performance was poor even when White gave his participants explicit
instructions about how to infer causal structure from observational
data. In contrast, we find that our participants are reliably able to infer
the structure of deterministic causal systems.

Although “root sparsity” is our own coinage, this term is related to a
cluster of existing ideas. Some work on causal attribution suggests that
people tend to prefer explanations that invoke a single root cause (Chi,
Roscoe, Slotta, Roy, & Chase, 2012; Lombrozo, 2007; Pacer &
Lombrozo, 2017), although Zemla, Sloman, Bechlivanidis, and Lagnado
(2017) report the opposite finding. Many studies of causal parameter
learning consider cases in which there are two potential causes of an
effect: a focal cause and a background cause. In this setting learners
seem to expect that exactly one of these potential causes is strong (Lu
et al., 2008). Mayrhofer and Waldmann (2015) explore a related idea in
their work on prior expectations in structure learning. One of the priors
that they consider captures the idea that an effect has a single cause.
The notion of root sparsity is also consistent with studies of structure
learning that focus on the role of interventions. Several researchers in
this literature suggest that people tend to succeed only when inter-
ventions are not accompanied by spurious changes. If this condition
holds then all changes observed following an intervention can be traced
back to a single root cause – that is, to the intervention (Fernbach &
Sloman, 2009; Lagnado & Sloman, 2004). Rottman and Keil (2012)
show that the same condition supports structure learning from ob-
servational data if the temporal sequence of the observations is known.

Our primary goal is to explore the extent to which determinism and
root sparsity allow people to succeed at structure learning. We find that
people perform well when determinism and root sparsity both apply,
and that either condition alone is sufficient to produce high levels of
performance. To help us understand our participants’ inferences, we
compare these inferences to the predictions of several computational
models. We initially focus on a model that we refer to as the Bayesian
structure learner, or the BSL for short. The BSL serves as a normative
benchmark that helps to evaluate the extent to which people succeed at
structure learning. Previous discussions of structure learning have also
considered Bayesian benchmarks, but Fernbach and Sloman (2009)
suggest that there is “little reason to treat them as descriptively correct”
(p. 681). In our setting, however, we find that people’s inferences align
closely with the predictions of our Bayesian model in many cases.

The BSL model contrasts with previous statistical accounts of
structure learning that are sensitive to patterns of conditional in-
dependence between variables (Pearl, 2000; Spirtes, Glymour, &
Scheines, 2001). Like several previous authors (Fernbach & Sloman,

2009; Mayrhofer & Waldmann, 2011), we believe that models that
track patterns of conditional independence are often too powerful to
capture inferences made by resource-bounded human learners. The BSL
model uses statistical inference in a different way, and relies on a
computation that assesses how much of a coincidence the available data
would be with respect to different possible structures. It is therefore
possible that people rely on a similar kind of statistical computation
when approaching structure learning problems.

2. Four classes of causal networks

The causal systems that we consider are simple activation networks.
Each network can be represented as a graph which may include cycles.
Each node in the graph can be active or inactive, and the edges in the
graph transmit activation from one node to another.

This paper will consider four qualitatively different classes of causal
networks that are summarized in Table 1. The causal links in a network
may be deterministic (D) or probabilistic (P), and root causes may be
sparse (S) or non-sparse (N), producing a total of four possibilities that
we refer to as classes DS, DN, PS, and PN.

Fig. 2a shows an example of activation spreading over a network
from class DS. At stage i, node A activates spontaneously. At stage ii,
node A has activated nodes B and C. At stage iii, node B has activated
node D, and the network has reached a stable end state. The links in the
network are deterministic, which means that they always succeed in
transferring activation from one node to another. Root causes are
sparse, which means that at most one node activates spontaneously per
trial. As a result, each end state is the consequence of a single root
cause. For example, the end state in Fig. 2a.iii is the consequence of the
initial activation of node A.

Fig. 2b shows a network for which root causes are non-sparse. At

Fig. 1. Learning the causal structure of a power network given observations alone. (a) When voltage spikes are observed, either (i) stations A and B both have voltage
spikes or (ii) B alone has voltage spikes. (b) These observations support the inference that station A sends power to station B.

Table 1
Four classes of causal networks. For each class, the number of possible causal
histories for a network with n nodes and l links is shown.

Causal strength Number of root causes

1 ≥ 1

Deterministic Class DS (deterministic and
sparse)

Class DN (deterministic and
non-sparse)

Experiment 1 Experiment 2
n 2n

Probabilistic Class PS (probabilistic and
sparse)

Class PN (probabilistic and non-
sparse)

Experiment 3 Experiment 4

−n (2 1)l −2 (2 1)n l
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