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A B S T R A C T

Bayesian models of cognition assume that people compute probability distributions over hypotheses. However,
the required computations are frequently intractable or prohibitively expensive. Since people often encounter
many closely related distributions, selective reuse of computations (amortized inference) is a computationally
efficient use of the brain’s limited resources. We present three experiments that provide evidence for amorti-
zation in human probabilistic reasoning. When sequentially answering two related queries about natural scenes,
participants’ responses to the second query systematically depend on the structure of the first query. This in-
fluence is sensitive to the content of the queries, only appearing when the queries are related. Using a cognitive
load manipulation, we find evidence that people amortize summary statistics of previous inferences, rather than
storing the entire distribution. These findings support the view that the brain trades off accuracy and compu-
tational cost, to make efficient use of its limited cognitive resources to approximate probabilistic inference.

“Cognition is recognition.”
Hofstadter (1995)

1. Introduction

Many theories of probabilistic reasoning assume that human brains
are equipped with a general-purpose inference engine that can be used
to answer arbitrary queries for a wide variety of probabilistic models
(Griffiths, Vul, & Sanborn, 2012; Oaksford & Chater, 2007). For ex-
ample, given a joint distribution over objects in a scene, the inference
engine can be queried with arbitrary conditional distributions, such as:

• What is the probability of a microwave given that I’ve observed a
sink?

• What is the probability of a toaster given that I’ve observed a sink
and a microwave?

• What is the probability of a toaster and a microwave given that I’ve
observed a sink?

The nature of the inference engine that answers such queries is still
an open research question, though many theories posit some form of

approximate inference using Monte Carlo sampling (e.g., Dasgupta,
Schulz, & Gershman, 2017; Denison, Bonawitz, Gopnik, & Griffiths,
2013; Gershman, Vul, & Tenenbaum, 2012; Sanborn & Chater, 2016;
Thaker, Tenenbaum, & Gershman, 2017; Vul, Goodman, Griffiths, &
Tenenbaum, 2014; Ullman, Goodman, & Tenenbaum, 2012). According
to these theories, probability distributions are mentally represented
with a set of samples, which are generated using a general-purpose
inference engine that can operate on arbitrary probability distributions.

The flexibility and power of such a general-purpose inference en-
gine trades off against its computational efficiency: by treating each
query distribution independently, an inference engine forgoes the op-
portunity to reuse computations across queries, thus reducing time
complexity (but possibly increasing space complexity). Every time a
distribution is queried, past computations are ignored and answers are
produced anew—the inference engine is memoryless, a property that
makes it statistically accurate but inefficient in environments with
overlapping queries.

Continuing the scene inference example, answering the third query
should be easily computable once the first two queries have been
computed. Mathematically, the answer can be expressed as:
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∧ =P P P(toaster microwave|sink) (toaster|sink,microwave) (microwave|sink).

(1)

Even though this is a trivial example, standard inference engines do not
exploit these kinds of regularities because they are memoryless—they
have no access to traces of past computations.

An inference engine may gain efficiency by incurring some amount
of bias due to reuse of past computations—a strategy we will refer to as
amortized inference (Gershman & Goodman, 2014; Stuhlmüller, Taylor,
& Goodman, 2013). For example, if the inference engine stores its an-
swers to the “toaster” and “microwave” queries, then it can efficiently
compute the answer to the “toaster or microwave” query without re-
running inference from scratch. More generally, the posterior can be
approximated as a parametrized function, or recognition model, that
maps data in a bottom-up fashion to a distribution over hypotheses,
with the parameters trained to minimize the divergence between the
approximate and true posterior.1 By sharing the same recognition
model across multiple queries, the recognition model can support rapid
inference, but is susceptible to “interference” across different queries, a
property that we explore below.

One way to construct a recognition model is using Monte Carlo
sampling: the recognition model can be viewed as a kind of data-driven
sampler whose parameters are optimized so that the samples resemble
the true posterior. In an amortized architecture, these parameters are
shared across different inputs (i.e., data) and hence the samples will be
correlated, introducing a systematic bias. If the sampling process cor-
responds to a Markov chain Monte Carlo algorithm (see below), this
bias will disappear with a sufficiently large number of samples, but
since humans appear to take a relatively small number of samples
(Dasgupta et al., 2017; Vul et al., 2014), we expect this bias to be
measurable.

Amortization has a long history in machine learning; the locus
classicus is the Helmholtz machine (Dayan, Hinton, Neal, & Zemel,
1995; Hinton, Dayan, Frey, & Neal, 1995), which uses samples from the
generative model to train a recognition model. More recent extensions
and applications of this approach (e.g., Kingma & Welling, 2013; Paige
& Wood, 2016; Rezende, Mohamed, & Wierstra, 2014; Ritchie, Thomas,
Hanrahan, & Goodman, 2016) have ushered in a new era of scalable
Bayesian computation in machine learning. We propose that amorti-
zation is also employed by the brain (see Yildirim, Kulkarni, Freiwald, &
Tenenbaum, 2015, for a related proposal), flexibly reusing past in-
ferences in order to efficiently answer new but related queries. The key
behavioral prediction of amortized inference is that people will show
correlations in their judgments across related queries.

We report 3 experiments that test this prediction using a variant of
the probabilistic reasoning task previously studied by Dasgupta et al.
(2017). In this task, participants answer queries about objects in scenes,
much like in the examples given above. Crucially, the hypothesis space
is combinatorial because participants have to answer questions about
sets of objects (e.g., “All objects starting with the letter S”). This renders
exact inference intractable: the hypothesis space cannot be efficiently
enumerated. In our previous work (Dasgupta et al., 2017), we argued
that people approximate inference in this domain using a form of Monte
Carlo sampling. Although this algorithm is asymptotically exact, only a
small number of samples can be generated due to cognitive limitations,
thereby revealing systematic cognitive biases such as anchoring and
adjustment, subadditivity, and superadditivity (see also Lieder,
Griffiths, Huys, & Goodman, 2017b, 2017a; Vul et al., 2014).

We show that the same algorithm can be generalized to reuse in-
ferential computations in a manner consistent with human behavior.

First we describe how amortization might be used by the mind. We
consider two crucial questions about how this might be implemented:
what parts of previous calculations do people reuse—all previous
memories or summaries of the calculations— and when do they choose
to reuse their amortized calculations. Next we test these questions
empirically. In Experiment 1, we demonstrate that people do use
amortization by showing that there is a lingering influence of one query
on participants’ answers to a second, related query. In Experiment 2, we
explore what is reused, and find that people use summary statistics of
their previously generated hypotheses, rather than the hypotheses
themselves. Finally, in Experiment 3, we show that people are more
likely to reuse previous computations when those computations are
most likely to be relevant: when a second cue is similar to a previously
evaluated one.

2. Hypothesis generation and amortization

Before describing the experiments, we provide an overview of our
theoretical framework. First, we describe how Monte Carlo sampling
can be used to approximate Bayesian inference, and summarize the
psychological evidence for such an approximation. We then introduce
amortized inference as a generalization of this framework.

2.1. Monte Carlo sampling

Bayes’ rule stipulates that the posterior distribution is obtained as a
normalized product of the likelihood P d h( | ) and the prior P h( ):

H

=
∑ ′ ′′∈

P h d P d h P h
P d h P h

( | ) ( | ) ( )
( | ) ( )

,
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where H is the hypothesis space. Unfortunately, Bayes’ rule is com-
putationally intractable for all but the smallest hypothesis spaces, be-
cause the denominator requires summing over all possible hypotheses.
This intractability is especially prevalent in combinatorial space, where
hypothesis spaces are exponentially large. In the scene inference ex-
ample,H H H H= × × ⋯ K1 2 is the product space of latent objects, so
if there are K latent objects and M possible objects, H = M| | K . If we
imagine there are =M 1000 kinds of objects, then it only takes =K 26
latent objects for the number of hypotheses to exceed the number of
atoms in the universe.

Monte Carlo methods approximate probability distributions with
samples = …θ h h{ , , }N1 from the posterior distribution over the hypoth-
esis space. We can understand Monte Carlo methods as producing a
recognition model Q h d( | )θ parametrized by θ (see Saeedi, Kulkarni,
Mansinghka, & Gershman, 2017, for a systematic treatment). In the
idealized case, each hypothesis is sampled from P h d( | ). The approx-
imation is then given by:

�∑≈ = =
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h h( | ) ( | ) 1 [ ],θ
n

N

n
1 (3)

where � =[·] 1 if its argument is true (and 0 otherwise). The accuracy of
this approximation improves with N, but from a decision-theoretic
perspective even small N may be serviceable (Vul et al., 2014; Lieder,
Griffiths, Huys, & Goodman, 2017a; Gershman, Horvitz, & Tenenbaum,
2015).

The key challenge in applying Monte Carlo methods is that gen-
erally we do not have access to samples from the posterior. Most
practical methods are based on sampling from a more convenient dis-
tribution, weighting or selecting the samples in a way that preserves the
asymptotic correctness of the approximation (MacKay, 2003). We focus
on Markov chain Monte Carlo (MCMC) methods, the most widely used
class of approximations, which are based on simulating a Markov chain
whose stationary distribution is the posterior. In other words, if one
samples from the Markov chain for long enough, eventually h will be
sampled with frequency proportional to its posterior probability.

1 Formally, this is known as variational inference (Jordan, Ghahramani, Jaakkola, &
Saul, 1999), where the divergence is typically the Kullback-Leibler divergence between
the approximate and true posterior. Although this divergence cannot be minimized di-
rectly (since it requires knowledge of the true posterior), a bound (variational free en-
ergy) can be tractably optimized for some classes of approximations.
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