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Inferring mass in complex scenes by mental simulation
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a b s t r a c t

After observing a collision between two boxes, you can immediately tell which is empty and which is full
of books based on how the boxes moved. People form rich perceptions about the physical properties of
objects from their interactions, an ability that plays a crucial role in learning about the physical world
through our experiences. Here, we present three experiments that demonstrate people’s capacity to rea-
son about the relative masses of objects in naturalistic 3D scenes. We find that people make accurate
inferences, and that they continue to fine-tune their beliefs over time. To explain our results, we propose
a cognitive model that combines Bayesian inference with approximate knowledge of Newtonian physics
by estimating probabilities from noisy physical simulations. We find that this model accurately predicts
judgments from our experiments, suggesting that the same simulation mechanism underlies both
peoples’ predictions and inferences about the physical world around them.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Consider the scene in Fig. 1a. Despite the difference in size, one
can infer that the mass of the forklift is large compared to that of
the storage container. Inferences about the physical properties of
objects such as mass and friction are critical to how we understand
and interact with our surroundings. While they are sometimes
specified unambiguously by a small set of perceptible features
such as size, material, or tactile sensations, we often access them
only indirectly via their physical influence on observable objects.
Here, we ask: how do people make such inferences about the
unobservable physical attributes of objects from complex scenes
and events?

In addition to one-off inferences about properties such as mass,
people form beliefs about these properties over time. For example,
through experience, people learn that certain materials (e.g.,
metal) are heavier than others (e.g., plastic). How is it that people
learn these attributes? Certainly, people may rely on sensorimotor
feedback as they hold and manipulate objects (e.g. Baugh, Kao,
Johansson, & Flanagan, 2012). Can people also learn through expe-
rience if only visual information about the static and dynamic
behavior of such objects is available? If so, what is the mechanism
by which they do this?

There is a vast literature on whether (and if so, how) people rea-
son about mass. People are clearly sensitive to mass when reason-
ing about other physical properties: for example, people’s memory
for the location of an object is affected by its implied weight
(Hubbard, 1997); similarly, people make different judgments
about how a tower of blocks will fall down depending on which
blocks they think are heavier (Battaglia, Hamrick, & Tenenbaum,
2013). Previous studies of how humans infer mass from observed
collision dynamics have examined the relative roles of perceptual
invariants (Runeson, Juslin, & Olsson, 2000) and heuristics
(Gilden & Proffitt, 1994; Todd & Warren, 1982), focusing on judg-
ments about simple one- or two-dimensional (1D or 2D) situations
with one or two objects. However, the real world is much more
complex: everyday scenes are three-dimensional (3D) and often
involve many objects.1 Moreover, collisions between objects are
not the only factor affecting peoples’ judgments: for example, there
are no collisions in the forklift scene in Fig. 1a, yet we can easily infer
what the relative masses of the objects might be.

A question related to whether people can make accurate infer-
ences about unobservable physical properties is how they make
any inferences at all. Sanborn, Mansinghka, and Griffiths (2009,
2013) proposed that inferences could be characterized by a model
that performs Bayesian inference over structured knowledge of
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1 We define a 3D scene to be any scene that contains depth information, regardless
of whether it is viewed as a 2D projection. We define a 2D scene to be a scene with no
depth cues (i.e., it is truly 2D and not a projection of a 3D scene).
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Newtonian physics2 and noisy or uncertain perceptual inputs. In the
2D case, this ‘‘Noisy Newton” hypothesis works well for inferring
properties like mass because the laws of Newtonian physics (such
as conservation of momentum) can be encoded as distributions over
random variables such as velocity, where the randomness comes
from perceptual uncertainty (Sanborn et al., 2009, 2013; Sanborn,
2014). However, for scenes involving both statics and dynamics, it
is not clear where these probabilities should come from. For exam-
ple, if the forklift in Fig. 1a is about to tip over, you can infer that
the storage container is heavier, because if it were not, the forklift
would likely remain upright. Where does this ‘‘likelihood of remain-
ing upright” come from?

Recent research has proposed that people reason about com-
plex environments using approximate and probabilistic mental
simulations of physical dynamics (Battaglia et al., 2013; Hamrick,
Battaglia, & Tenenbaum, 2011). They are approximate in the sense
that they do not analytically solve the exact equations that underly
Newtonian physics, but rather estimate the implications of those
equations through an iterative process. They are probabilistic in
that the simulations are non-deterministic, where the stochasticity
reflects uncertainty that arises from noisy perceptual processes
and imperfect knowledge of the scene. There is a growing body
of evidence that people use such approximate and probabilistic
mental simulations, including explanations of human judgments
of physical causality and prediction in a wide range of scenarios
(Gerstenberg, Goodman, Lagnado, & Tenenbaum, 2012, 2014;
Hamrick, Smith, Griffiths, & Vul, 2015; Smith & Vul, 2013; Smith,
Battaglia, & Vul, 2013; Smith, Dechter, Tenenbaum, & Vul, 2013;
Ullman, Stuhlmüller, Goodman, & Tenenbaum, 2014). A similar
hypothesis has also been proposed by White (2012), suggesting
that simulations are the result of retrieving past perceptual experi-
ences and extrapolating using a forward model.

If people use probabilistic mental simulations to make predic-
tions about physical scenes, then it should be possible for people
to use those simulations to estimate the probabilities of different
outcomes. These probabilities can be used to make inferences
about unobservable physical properties. Indeed, recent work by

Ullman et al. (2014) and Gerstenberg et al. (2012, 2014) has pro-
vided examples of how simulations might be used in simple 2D
scenes to estimate the necessary probabilities for Bayesian infer-
ence. However, such an approach has not been applied to the types
of complex, 3D scenes that people encounter in the real world.

Using probabilistic simulation to make inferences about unob-
servable physical properties also suggests a unified framework
both for reasoning about individual object-level properties (i.e.,
that the forklift in Fig. 1a is heavier than the storage container)
as well as class- or material-level properties (i.e., that objects made
out of stone are heavier than objects made out of plastic). Histori-
cally, research has focused on how people make one-shot infer-
ences about the properties of individual objects (Gilden &
Proffitt, 1989a; Runeson et al., 2000; Sanborn et al., 2009, 2013;
Sanborn, 2014; Todd & Warren, 1982), but not on how these
inferences might also play a role in learning class-level properties
such as the density of a particular material. We suggest that if
Bayesian inference is performed using probabilities obtained
through approximate physical simulation, then this could provide
an account for both one-shot inferences and learning. Specifically,
Bayes’ rule dictates both how to compute inferences about individ-
ual objects, as well as how to integrate multiple pieces of informa-
tion over time to learn about the properties of classes of objects.

This work is the first to explore people’s ability to make infer-
ences about mass in complex scenes that may be either static or
dynamic, and addresses two questions regarding this ability. First:
can people make accurate inferences? To answer this, we present
three experiments in which we asked people to make inferences
about the relative masses of objects in complex scenes involving
both static and dynamic objects. We find that people can form
accurate judgments about the relative mass, and that they become
increasingly fine-tuned to these properties as they accumulate
multiple pieces of information. Second: how do people make infer-
ences about properties like mass? We introduce a new cognitive
model that uses approximate, probabilistic simulation to estimate
probabilities needed by Bayesian inference to produce judgments
about the relative mass of objects. When compared to data from
our experiments, we find that our model is a good characterization
of how people make inferences about the masses of individual
objects and how they learn about the mass of a class of objects.
Moreover, by replacing the model’s simulations with people’s
own predictions about the future dynamics of the scenes, our

2 In this context, we take ‘‘structured” to mean implicit knowledge of formal
physical laws, in contrast to implicit knowledge of naïve physics or explicit
knowledge of formal physics. See Section 6for further discussion of how these
differing forms of physical knowledge relate.

Fig. 1. Three scenes that engage our ability to reason about mass. (a) The forklift’s weight counterbalances the container’s. (b and c) Two examples of experimental stimuli. If
the green blocks in (b) are heavier than the purple blocks, you can predict that the tower will fall down rather than remain standing. If the tower in (c) stays standing, you can
infer that the blue blocks are heavier. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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