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a b s t r a c t

This paper presents a new theory of syllogistic reasoning. The proposed model assumes there are prob-
abilistic representations of given signature situations. Instead of conducting an exhaustive search, the
model constructs an individual-based ‘‘logical” mental representation that expresses the most probable
state of affairs, and derives a necessary conclusion that is not inconsistent with the model using heuristics
based on informativeness. The model is a unification of previous influential models. Its descriptive
validity has been evaluated against existing empirical data and two new experiments, and by qualitative
analyses based on previous empirical findings, all of which supported the theory. The model’s behavior is
also consistent with findings in other areas, including working memory capacity. The results indicate that
people assume the probabilities of all target events mentioned in a syllogism to be almost equal, which
suggests links between syllogistic reasoning and other areas of cognition.
� 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

All fools are poets; this the Prefect feels; and he is merely guilty
of a non distributio medii in thence inferring that all poets are
fools.

[— Edgar Allan Poe, The Purloined Letter (1845)]

1. Introduction

Reasoning is intended to derive reasonable conclusions from
premises. Given the assertions that ‘‘The Kyotoite are Japanese”
and ‘‘The Japanese are Asian,” it is reasonable to conclude that
‘‘The Kyotoite are Asian.” In this case, the relation is transitive: if
K? J and J? A, then K? A. However, if one knows that ‘‘The
Kyotoite are suave,” it is illogical to infer that ‘‘Suave people are
Kyotoite.” A relation is symmetric if X? Y implies Y? X, but such
symmetrical derivations are not licensed in logic. As such, some
inferences are logically valid, and others are invalid; some are easy,
and others are difficult. The difficulty of inference depends, at least
partly, on its logical form, but an error-prone argument can some-
times be obvious with a slight change in wording (e.g., using famil-
iar terms). At the same time, difficulty of inference must relate to
other types of thinking, because if nothing else, reasoning must

be carried out in working memory. Any comprehensive psycholog-
ical theory of reasoning must address these issues, that is, why
some inferences are difficult and how this relates to other areas
of cognition. The current paper proposes one such attempt, along
with the novel idea of probabilistic representation. Before going into
detail, however, I first motivate two issues regarding cognitive
architecture and inferential structure: mental representations
and symmetry, which will feature strongly in what follows.

The current theory (probabilistic representation theory hereafter)
proposes dual mental representations: probabilistic representa-
tions and individual-based mental models.1 This is based on the
hypothesis that people have several thinking modes. We sometimes
take a summary view with probabilistic representations when, for
example, we are seeking some rules or tendencies that are useful
for predictive inference. In this heuristic mode, we think and talk
about probable relations between classes of events or objects (e.g.,
‘‘I know the Kyotoite are suave [by and large].”). In contrast, when
critically testing a hypothesis or thinking counterfactually, we take
a distinctive view with individual-based representations. In this ana-
lytic mode, we talk about stricter (i.e., more logical) rules, sometimes
focusing on exceptions (e.g., ‘‘One of my acquaintances is Kyotoite,
but he is not suave; so, I don’t think this is true.”). In this way,
we can easily switch views according to factors such as context,
situation, motivation, and purpose. These two distinctive views, I
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assume, depend on different representations: continuous (i.e., proba-
bilistic) and discrete (i.e., individual-based).

Probabilistic representation theory supposes the summary view
precedes the distinctive, because the summary view is based on
heuristic processes but the distinctive view is based on deliberate
processes. People first have a probabilistic intuition, and next con-
struct mental models based on that intuition that serves for logical
tests. As a result, the distinctive view is affected by the summary
view, in that, people’s probabilistic intuitions restrict how they test
logical relations. In modeling this mechanism, a set of discrete
mental models is a summary representation of a primitive contin-
uous probabilistic model, and not the other way around. This
implementation is unique among probabilistic approaches that
have been proposed for deductive reasoning. One previous model
(Chater & Oaksford, 1999) did not propose any internal representa-
tions, and the others (Guyote & Sternberg, 1981; Johnson-Laird,
Legrenzi, Girotto, Legrenzi, & Caverni, 1999; Khemlani, Lotstein,
Trafton, & Johnson-Laird, 2015) assume the priority of discrete
models, introducing probabilistic behavior by allocating numerals
(i.e., probability values) to discrete models.

This aspect of the theory is an extension of recent approaches to
reasoning based on probability (e.g., Chater & Oaksford, 1999;
Evans & Over, 2004; Oaksford & Chater, 2007) called the new para-
digm in the psychology of reasoning (Elqayam & Over, 2013; Over,
2009). Although logic guides deductive reasoning, the idea that
deduction depends on logic as a normative theory of human rea-
soning is now an ‘‘ancient proposal” (Johnson-Laird, Khemlani, &
Goodwin, 2015, p. 201). After the 1990s, many researchers moved
to probabilistic approaches to reasoning. In these approaches it is
usually presupposed that degrees of certainty or belief correspond
to subjective probabilities, and the validity of an argument is
assessed via the probabilistic validity, or p-validity, proposed by
Adams (1975): the uncertainty (i.e., the complement of the proba-
bility) of a p-valid conclusion does not exceed the sum of the
uncertainties of the premises. This presupposition implicitly
requires each proposition to retain its probability (at any time in
any context, in principle) to enable probabilistic inference as
follows:

The Kyotoite are suave. (prob = 0.85)
The suave are . . . (prob = 0.43)
. . . (prob = 0.05)

) The Kyotoite are . . . (prob = . . .)

This actually places an excessive load on the working memory,
especially when forming a chain of inferences, because an extra
piece of information about probability must be retained for each
statement. Moreover, even a couple of premises can result in innu-
merable (p-)valid (but vapid) conclusions (see, Johnson-Laird et al.,
2015). Thus, a model based on a system of p-validity (as well as a
standard binary logic) can generate serious concerns at the algorith-
mic level about the feasibility of a model implementing (deductive)
reasoning. It seems reasonable to suppose that people discretize
(i.e., simplify) their degrees of belief in each proposition at some
point in time. For example, a statement with a probability of 95%
or higher may be regarded as just a ‘‘true” statement somewhere
in the course of the reasoning process. In the probabilistic represen-
tation model, this is done by constructing a discrete model (i.e.,
by generating a small number of samples) in accordance with a
given probability distribution contained in the probabilistic
representation.

The current theory also proposes that symmetry inferences are
central to syllogistic reasoning performance. The symmetry infer-
ence is prevalent not only in syllogisms, but also in other areas.

For example, a conditional ‘‘If X then Y” is often interpreted as if
it also means that ‘‘If not-X then not-Y” or ‘‘If Y then X” at the same
time (e.g., Geis & Zwicky, 1971; Staudenmayer, 1975). A logic-
based account for this inference is that the conditional ‘‘X? Y” is
prone to be interpreted as a biconditional ‘‘XM Y” (e.g., Johnson-
Laird & Byrne, 1991). Similarly, if one is told that the probability
of a woman who has breast cancer receiving a positive mammog-
raphy is 80%, then one is apt to infer that the probability that a
woman who tested positive actually has breast cancer is also about
80%, even if the answer clearly violates the Bayesian norm (Eddy,
1982; Gigerenzer & Hoffrage, 1995; Tversky & Kahneman, 1980).
Many researchers have attributed this type of error to the inverse
fallacy, a tendency to confuse a given conditional probability P
(symptom | disease) with the inverse conditional probability, P(dis-
ease | symptom), that is to be judged (Braine, Connell, Freitag, &
O’Brien, 1990; Gavanski & Hui, 1992; Hammerton, 1973; Koehler,
1996; Macchi, 1995; Villejoubert & Mandel, 2002; Wolfe, 1995).
These are all examples of the symmetry inference.

One of the reasons why symmetry inference is important for a
comprehensive theory of thinking is that this mode of inference
has been argued to be distinctively human. Nonhuman animals
such as chimps (Dugdale & Lowe, 1990, 2000), find symmetry
inferences extremely difficult (e.g., D’Amato, Salmon, Loukas, &
Tomie, 1985; Sidman et al., 1982). Many researchers have pointed
to the relevance of symmetry to language processing (e.g., Dugdale
& Lowe, 1990; Horne & Lowe, 1996; Oaksford, 2008) or to creativ-
ity (Hattori, 2008). The fundamental ability to perform symmetry
inferences may be constrained by phylogenetic factors, and is
closely related to other areas of cognition such as language and
creativity that are only found in humans. Thus, appearance of
symmetry inferences in syllogistic reasoning may be a reflection
of our common cognitive architecture.

A theory with probabilistic representations may afford an
insight into the nature of symmetry inferences. Hattori and
Nishida (2009) hypothesized that people tend to regard two target
classes of objects or events as almost equal in size (see Fig. 1). For
example, when we think of a disease (e.g., breast cancer) and its
symptoms (e.g., a positive mammography), we assume that the
sizes of two target sets, one for the disease and the other for symp-
toms, are roughly the same. This default assumption results in the
inverse fallacy. It is reasonable to assume that the target events
have a similar probability, unless we know this is not the case
(e.g., showing many false positives for a rare disease), because
we then gain some information about the credibility of the test.
Thus equating the sizes of two target sets (i.e., a set-size balancing
principle2) is a reasonable model of ignorance and the simplest
assumption. This principle is known to be maintained in other areas
of human thinking, including causal induction (Hattori & Oaksford,
2007) and reasoning in the Wason selection task (Hattori, 2002).
Therefore the current theory can reveal an important new link
between deductive reasoning and other areas of thinking.

I now briefly introduce the syllogistic reasoning task and some
of the terminology required to understand the literature and the
current theory before turning to review of previous studies. I fol-
low the orthodox Aristotelian classification in this paper, although
there are several different forms of notation used in the psycholog-
ical literature (see also Appendix A). Syllogisms are constructed
with two premises and one conclusion. Each statement is one of
four forms called moods. Traditionally, these are labeled A, I, E,
and O:

2 It is called the equiprobability assumption in Hattori and Oaksford (2007) and
Hattori and Nishida (2009). However, some researchers use the same term with the
different meaning that each individual possibility has the same probability (e.g.,
Johnson-Laird et al., 1999; Lecoutre, 1992). To avoid confusion, I adopt a different
name here.
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