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Neural signature of hierarchically structured expectations predicts
clustering and transfer of rule sets in reinforcement learning
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a b s t r a c t

Often the world is structured such that distinct sensory contexts signify the same abstract rule set.
Learning from feedback thus informs us not only about the value of stimulus-action associations but also
about which rule set applies. Hierarchical clustering models suggest that learners discover structure in
the environment, clustering distinct sensory events into a single latent rule set. Such structure enables
a learner to transfer any newly acquired information to other contexts linked to the same rule set, and
facilitates re-use of learned knowledge in novel contexts. Here, we show that humans exhibit this
transfer, generalization and clustering during learning. Trial-by-trial model-based analysis of EEG signals
revealed that subjects’ reward expectations incorporated this hierarchical structure; these structured
neural signals were predictive of behavioral transfer and clustering. These results further our understand-
ing of how humans learn and generalize flexibly by building abstract, behaviorally relevant representa-
tions of the complex, high-dimensional sensory environment.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

How do we take actions that maximize the potential to obtain
desired outcomes? Reinforcement-learning (RL) models success-
fully account for many aspects of human learning behavior and
neural activity, by defining a process mechanism that integrates
reinforcement history for well-specified stimuli and actions
(Frank & O’Reilly, 2006; Montague, Dayan, & Sejnowski, 1996).
However, in real life, stimuli are not so well defined: their features
are nearly infinite, but only a small subset of them matter for
determining how to act. While humans are adept at learning in
complex novel situations, RL models in real world settings suffer
from the curse of dimensionality. An approach to facilitate learning
in complex environments would be to simplify the representation
of the environment: for example, to recognize when different sen-
sory states actually should be considered as equivalent, because
interaction with them leads to similar outcomes. Doing so would
afford generalization and transfer, obviating the need to learn for
every single sensory state: given the same goal, any information
gathered for one situation may also serve to inform other sensorily
distinct, but behaviorally equivalent situations. This ‘‘learning to
learn” functionality requires building a state and action space that

is abstracted away from pure sensory/motor components, but
instead comprises functionally relevant states/actions over which
RL operates. Computational models of this structure learning pro-
cess predict that learners cluster together contexts that are indica-
tive of the same latent task set, and further, that such clustering
also allows them to construct best guesses of the appropriate set
of behaviors in novel contexts (Collins & Frank, 2013). Here, we
investigate how the brain constructs, clusters and generalizes
these types of structured rule abstractions in the course of
learning.

As a real-world example, consider having a laptop with one
operating system, and a desktop computer with another. Here,
the current sensory context (laptop or desktop) cues a higher-
order representation of an abstract context (Mac or Linux), which
then determines the lower-order set of rules for behavior (specific
actions to reach specific goals). The higher order context defines a
rule-set that is ‘‘latent” or not tied to a specific context: in this case
the observable context is the computer used, but the rule-set is
more abstract and can be generalized to other contexts when
appropriate, allowing for rapid learning and transfer of new
actions. Thus, you may learn that your work desktop is also associ-
ated with the ‘‘Mac” rule-set. When you learn a new shortcut on
that desktop, you can immediately assume that it will have the
same effect on your laptop (but not on your home PC) even if
you’ve never tried it before. Similarly, if you try a new computer
and the shortcuts typically used on your PC produce desired
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effects, you may infer that it has the same OS and generalize your
knowledge of that OS to other actions on that new machine. Clus-
tering models further predict that the shortcuts you try in the first
place are more likely to be the ones that have worked across a vari-
ety of machines – even if they’re not the machines (and hence
shortcuts) you’ve used most frequently.

We recently showed that humans build structure a priori – sub-
jects do not only discover structure when it exists in the task, but
apply structure to learning problems that could be described more
simply without structure and in which it is not directly beneficial
to learning (Collins & Frank, 2013). Nevertheless, EEG markers of
PFC function predicted subjects’ tendency to create structure and
later use it to generalize previously learned rules to new contexts
(Collins, Cavanagh, & Frank, 2014). Computational models cap-
tured this structured learning using Bayesian hierarchical cluster-
ing (Doshi, 2009; Teh et al., 2006) of task-set rules, which could
be approximately implemented in a hierarchical PFC-BG neural
network (Collins & Frank, 2013). However, these previous studies
were designed to test whether subjects tended to create structure
even when no such structure was needed. Here, we develop a para-
digm to assess whether subjects discover the form of structure that
maximizes their ability to generalize, and whether they do so in a
manner predicted by clustering models. In particular, these models
predict that subjects should treat a particular dimension of the
stimulus to be ‘‘higher-order” indicative of the rule-set if distinct
elements of that dimension can be clustered together, that is, if
they signify the same set of mappings between lower order stimu-
lus features and actions. We test whether subjects can indeed iden-
tify the appropriate dimension that affords generalization, and
further assess the implications of such clustering in novel contexts.
We recorded EEG to assess evidence for such hierarchical cluster-
ing in the neural signal.

Specifically, our experimental paradigm (Fig. 1) assesses
whether subjects abstract over multiple features that are perceptu-
ally distinct (e.g., different colors) but which all signify the same
rule in terms of how they condition the contingencies between
other features (e.g., shapes), actions and outcomes. Our model pre-
dicts that if one feature dimension (e.g. color) allows such cluster-
ing of lower level rules, then subjects will treat this feature as
higher-order context indicative of an abstract latent task set
(Collins & Frank, 2013), while treating the other features (shapes)
as lower level stimuli. Because this structure separates the latent
rule-set from the contexts (colors) that cue it, it endows a learner
with the ability to append any newly encountered lower order
stimulus-action associations to an existing rule-set, and thus to
immediately generalize it to all contexts indicative of the same set.

Our clustering model makes more specific predictions regarding
how subjects treat new contexts in which they are uncertain about
which existing rule-set (if any) should apply. Clustering implies not
only that contexts indicative of the same rule can be grouped
together, but also the number of such contexts in a cluster is
indicative of the popularity of that structure, and hence affects
the probability that this structure is selected in a new context
(technically, we use a non-parametric prior called the Chinese Res-
taurant Process (CRP) Teh et al., 2006; Gershman & Blei, 2012).
Note, however, that the most popular rule may not be the one that
has been experienced most often: clustering occurs as a function of
number of distinct contexts and not the number of trials (as
assumed in other clustering models (Gershman, Blei, & Niv,
2010). (In the computer example, our model predicts that one’s
expectation for the operating system of a new computer would
be based on the relative proportion of computers that had used
Mac OS in the subject’s experience, even if they had spent 95% of
the time on a single PC.) Thus in our design (Figs. 1 and 2A, B)
we equate trial frequency across different rule structures but

assess whether subjects show evidence of context popularity-
based clustering.

EEG is sensitive to reward expectations (Cavanagh, Frank, Klein,
& Allen, 2010; Fischer & Ullsperger, 2013; Holroyd & Krigolson,
2007; Holroyd, Pakzad-Vaezi, & Krigolson, 2008; Sambrook &
Goslin, 2015; Walsh & Anderson, 2012). We use trial-by-trial
model-based analysis (Cavanagh, 2015; Harris, Adolphs, Camerer,
& Rangel, 2011; Larsen & O’Doherty, 2014) to investigate whether
EEG signals are better accounted for by information processing that
includes structure-learning, and whether these signals are predic-
tive of generalization and clustering.

2. Material and methods

2.1. Subjects

2.1.1. Behavioral experiment
34 subjects participated (20 female, ages 18–30), and one was

excluded for outlier low performance. Analyses were performed
on 33 subjects, including 18 in the TS1 as old TS in phase C group,
and 15 in the TS2 group.

2.1.2. EEG experiment
We collected data for 39 subjects (26 female, ages 18–30). 7

subjects were excluded for poor participation (more than 50 no
response trials) and a further 3 for poor performance (3 standard
deviations under overall group mean performance), so that behav-
ioral analysis was performed on 29 subjects. Due to technical prob-
lems with the EEG cap, 3 additional subjects were excluded from
EEG analysis, leaving 26 subjects.

2.2. Experimental protocol

2.2.1. Structure
Subjects performed a learning experiment in which they used

reinforcement feedback to figure out which key to press for each
presented visual input. The experiment was divided into three
phases (see Fig. 1C). In all phases, visual input patterns comprised
a novel set of colored shapes. After stimulus presentation, subjects
selected one of 4 keys to press with their right hand. Simultaneous
visual and auditory feedback indicated truthfully whether they had
selected the correct action. See Section 2.2.3 for more details.

2.2.2. Phases
The three phases of the experiment were designed to test

whether subjects learned hierarchical structure and leveraged it
to transfer and generalize knowledge in new contexts. We describe
here the protocol in which color acts as ‘‘high level” context
(Fig. 1A), but the role of color and shape was counterbalanced
across subjects. Phase A included 6 different visual stimuli combin-
ing one of 3 colors (C0, C1 or C2) and one of two shapes (S1 or S2)
(Figs. 1C and 2A, B). We selected colored-shape action associations
such that they were identical for C0 and C1 but different for C2. As
shown in Fig. 2A, this provides an opportunity for structuring
learning such that C0 and C1 can be clustered on a single task-
set. Phase B included another 6 different visual stimuli combining
one of the same 3 colors (C0, C1 or C2) with one of two new shapes
(S3 or S4), Figs. 1 and 2A, B. The associations to be learned in this
transfer phase B respected the previous grouping of C0 and C1 into
a single task-set (Fig. 2A), such that even though subjects still
needed to learn de novo the correct actions for the new shapes,
we could test whether they could use the structure acquired in
phase A to more rapidly learn these associations that are shared
between C0 and C1 by generalizing learning from one to the other.
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