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a b s t r a c t

The fundamental goal of perception is to aid in the achievement of behavioral objectives. This requires
extracting and communicating useful information from noisy and uncertain sensory signals. At the same
time, given the complexity of sensory information and the limitations of biological information process-
ing, it is necessary that some information must be lost or discarded in the act of perception. Under these
circumstances, what constitutes an ‘optimal’ perceptual system? This paper describes the mathematical
framework of rate–distortion theory as the optimal solution to the problem of minimizing the costs of
perceptual error subject to strong constraints on the ability to communicate or transmit information.
Rate–distortion theory offers a general and principled theoretical framework for developing
computational-level models of human perception (Marr, 1982). Models developed in this framework
are capable of producing quantitatively precise explanations for human perceptual performance, while
yielding new insights regarding the nature and goals of perception. This paper demonstrates the applica-
tion of rate–distortion theory to two benchmark domains where capacity limits are especially salient in
human perception: discrete categorization of stimuli (also known as absolute identification) and visual
working memory. A software package written for the R statistical programming language is described
that aids in the development of models based on rate–distortion theory.
� 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Perception is the act of extracting meaning from noisy and
uncertain sensory signals, and in the process choosing what infor-
mation to transmit and what to discard. Once perceived, percep-
tual memory is the act of sending a message to your future self.
The fundamentally communicative nature of perception and mem-
ory suggests the relevance of information theory to the study of per-
ceptual processing. However, for biological information processing
systems, it is not enough to merely transmit information. Rather,
the goal of perceptual processing must be to help the organism
achieve goals. This suggests a utilitarian perspective on human
perception. Rate–distortion theory (Berger, 1971; Shannon, 1959)
represents the mathematical framework combining these two dis-
ciplines: information theory and decision theory.

This paper focuses on rate–distortion theory as a principled
mathematical framework for understanding human perception
and perceptual memory. The goal is to explain perception as a form
of computational rationality (Gershman, Horvitz, & Tenenbaum,
2015)—the maximization of performance subject to constraints
on information processing. When sensory signals are continuous
rather than discrete, or when communication channels lack suffi-

cient capacity, the loss of some information is inevitable. In this
case, the goal of perception cannot be the perfect transmission,
storage, or reproduction of afferent signals, but rather the mini-
mization of some cost function subject to constraints on available
capacity. Rate–distortion theory concerns the optimal solution to
this difficult tradeoff.

With its focus on minimizing the costs of error, as well as opti-
mally integrating prior beliefs and uncertain sensory evidence,
rate–distortion theory shares much in common with the proba-
bilistic inference approach to perception (Kersten, Mamassian, &
Yuille, 2004; Knill & Richards, 1996) and in particular Bayesian
decision theory (Körding, 2007; Maloney & Mamassian, 2009).
Hence, rate–distortion theory has much to say about how biologi-
cal organisms should behave in a particular environment, in keep-
ing with ideal observer (Geisler, 2011) or rational analysis
(Anderson, 1990) approaches to understanding human cognition.
Such models can serve as a benchmark for comparing against
human performance, or may inspire theories of the underlying
neural mechanisms. Importantly, unlike fully rational Bayesian
models of perception, rate–distortion theory offers a means of
directly incorporating strong limits on the capabilities of the cogni-
tive system (in terms of channel capacity limits) in a principled and
theory-driven manner. In this regard, rate–distortion theory
represents an important tool for those interested in studying the
computational rationality of cognition.
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The theoretical approach advocated in this paper is an exten-
sion of much existing work in sensory neuroscience to higher-
level perception. The efficient coding hypothesis (Barlow, 1961)
suggests that the goal for neural information processing is to form
efficient codes for sensory signals. In this context, ‘efficient’ refers
to the reduction of redundancy. This idea has proven extremely
useful for understanding the properties of early cortical processing
of visual information, such as the nature of receptive fields in V1
(Olshausen & Field, 1997). However, reducing redundancy is but
one possible goal for biological computation. For organisms acting
in an environment, it may be more important for perceptual sys-
tems to be ‘‘good” than ‘‘efficient”. Here a good perceptual system
is one that accurately and reliably solves important perceptual
problems. The distinction is that costs and constraints can be
imposed not just by the internal neural architecture, but also by
the goals of the organism and the structure of the external environ-
ment. Rate–distortion theory generalizes the idea of efficient cod-
ing to allow for a broader range of possible cost functions (Hino &
Murata, 2009; Simoncelli & Olshausen, 2001).

The following section briefly introduces information theory and
its core constructs. These constructs are then used to motivate the
fundamental problem addressed by rate–distortion theory. The
theory is then applied to two domains: absolute identification
(the assignment of perceptual stimuli to ordinal categories) and
perceptual working memory. In each case, rate–distortion theory
contributes something fundamentally new to the understanding
of human perception.

2. Information theory: a brief introduction

Information theory is a scientific field spanning the boundaries
of mathematics and engineering. It was first codified by Claude
Shannon in 1948 under the title ‘‘A Mathematical Theory of Com-
munication”, and the following year with an introductory essay by
Warren Weaver, as ‘‘The Mathematical Theory of Communication”
(Shannon & Weaver, 1949). The subtle change in definite article
reflected the growing realization of the definitiveness of the the-
ory—a Bell Labs engineer who followed the developments noted
that Shannon’s publication ‘‘came as a bomb, and something of a
delayed action bomb” (Gleick, 2011, p. 221). In the decades that
followed, information theory had a transformative effect on many
fields, psychology and neuroscience included. Concise reviews of
the history of information theory in psychology and neuroscience
are given in Luce (2003) and Dimitrov, Lazar, and Victor (2011).
More extensive introductions to information theory can be found
in Gallistel and King (2009, chap. 1) and Cover and Thomas (2012).

Perhaps the most famous application of information theory
within psychology is George Miller’s ‘‘The Magical Number Seven,
Plus or Minus Two” (Miller, 1956). This paper concerned two quite
different topics: what Miller termed the span of immediate mem-
ory, and the span of absolute judgment. The former topic intro-
duced the concept of a chunk to the lexicon of cognitive
psychology. The latter proposed a limit on the number of bits avail-
able for the categorical identification of a perceptual signal. This
latter topic offers the most direct approach to information theory.

Quite simply, a bit is a unit of measure for a quantity of infor-
mation. It is important to emphasize that a unit of measure is
not the same as the physical quantity that is being measured. For
example, in the 19th century the meter was defined as the distance
between two marks on a platinum bar. Clearly, objects can be mea-
sured in meters even if they are not constructed out of platinum.
The distinction is important, because a bit is commonly understood
to refer to a binary digit—a 1 or a 0—but this connection is often
misleading. A binary digit conveys one bit of information, but infor-
mation need not be transmitted via a binary code. A photoreceptor

in the retina conveys information in the form of an analog and
graded signal. Despite this, the signal conveyed by a photoreceptor
is meaningfully measured and studied in terms of its information-
theoretic content, measured in bits.

If a bit measures information, then what is information?
Answering this question requires that a few elementary concepts
first be introduced. The first such concept is that of a random vari-
able, labeled x. Informally, a random variable is something that can
take one of a set of different possible values, where each value has
an associated probability. For example, x might refer to the roll of a
6-sided die, in which case the value of the random variable is
defined by the set f1;2; . . . ;6g, and if the die is fair, the associated
probabilities Pðx ¼ xiÞ ¼ 1

6 for xi 2 f1 . . .6g. In information theory,
the set of possible values that a random variable can take is also
called its alphabet. Random variables can be defined over continu-
ous alphabets as well. The height of a person is a random variable
whose domain is (in principle) all possible positive values. In this
case, the probability density function pðxÞ, describing the distribu-
tion of heights, might resemble a Gaussian or normal distribution.

For a discrete random variable taking a particular value x ¼ xi, it
is possible to define the surprise of that event as � log pðx ¼ xiÞ.
Why should the logarithm be relevant for measuring surprise? If
pðx ¼ xiÞ ¼ 0 then � log 0 ¼ 1. In other words, impossible events
are infinitely surprising. On the other hand, if pðx ¼ xiÞ ¼ 1 then
� log 1 ¼ 0: outcomes that are certain to happen are not surprising
at all. Another justification for a logarithmic measure of surprise
relates to the additivity of information gained by independent out-
comes. For example, if x and y are independent random variables,
then the ‘total surprise’ of observing both should (intuitively) equal
the sum of the surprise of each outcome individually. Using a log-
arithmic definition, � log pðx ^ yÞ ¼ ð� log pðxÞÞ þ ð� log pðyÞÞ.
Thus, the negative logarithm of probability provides an intuitively
correct measure of the surprisingness of an event. With surprise
formalized in this manner, the entropy of a random variable is sim-
ply its ‘average surprise’1:

HðxÞ ¼ �
X
i

PðxiÞ log PðxiÞ: ð1Þ

Note that this equation is simply the surprise of each outcome,
weighted by its probability of occurrence. If a random variable has
two equiprobable outcomes, the entropy of this binary random
variable equals 1 when the logarithm is taken as base 2. This is
defined to be 1 bit of information. Hence, the outcome of a fair coin
flip conveys a single bit of information. When the natural loga-
rithm is used, the corresponding unit of information is the nat
(1 nat � 1.44 bits).

Entropy describes the amount of information intrinsic to, or
‘contained’ in a random variable. Now consider a communication
channel for conveying information from this source, as illustrated
in Fig. 1. The input to this channel consists of samples from the
random variable x. The output is also a random variable, labeled
y. A communication channel relates a given input to the channel
output via a conditional probability distribution, Pðy jxÞ.

To give a concrete illustration of how the human perceptual
system can be viewed as a communication channel as in Fig. 1,
consider the task of visually judging (perceiving) the size of an
object sitting on a table. The true size can be labeled x, and charac-
terized by a probability distribution pðxÞ. The different possible val-
ues for x define the alphabet for the channel (if x is continuous,
then the source alphabet is also infinite). The distribution pðxÞ
might reflect, for example, the fact that it would be unlikely to
encounter extremely large objects sitting on a typical-sized table.
Due to intrinsic noise in neural coding, it is physically impossible

1 In Eq. (1) and throughout this paper, define 0� log 0 ¼ 0.
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