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a b s t r a c t

Compound generalization and dimensional generalization are traditionally studied independently by
different groups of researchers, who have proposed separate theories to explain results from each area.
A recent extension of Shepard’s rational theory of dimensional generalization allows an explanation
of data from both areas within a single framework. However, the conceptualization of dimensional
integrality in this theory (the direction hypothesis) is different from that favored by Shepard in his
original theory (the correlation hypothesis). Here, we report two experiments that test differential
predictions of these two notions of integrality. Each experiment takes a design from compound
generalization and translates it into a design for dimensional generalization by replacing discrete stim-
ulus components with dimensional values. Experiment 1 showed that an effect analogous to summation
is found in dimensional generalization with separable dimensions, but the opposite effect is found with
integral dimensions. Experiment 2 showed that the analogue of a biconditional discrimination is solved
faster when stimuli vary in integral dimensions than when stimuli vary in separable dimensions. These
results, which are analogous to more ‘‘non-linear’’ processing with integral than with separable dimen-
sions, were predicted by the direction hypothesis, but not by the correlation hypothesis. This confirms the
assumptions of the unified rational theory of stimulus generalization and reveals interesting links
between compound and dimensional generalization phenomena.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

An important aspect of all forms of learning is generalization;
that is, once we have learned something about the environment,
to what extent do we generalize this knowledge to new situations,
similar but not identical to the original learning events?

All fields in psychology dealing with learning and inference
have explored one or more aspects of this problem. For example,
dimensional generalization, or how learning about a stimulus is
transferred to new stimuli that differ from the original along
continuous dimensions, has been studied in animal instrumental
conditioning (e.g., Blough, 1975; Guttman & Kalish, 1956; Soto &
Wasserman, 2010; for a review of unidimensional generalization,
see Ghirlanda & Enquist, 2003) and human identification and

categorization (for reviews, see Nosofsky, 1992; Shepard, 1991).
On the other hand, compound generalization, or how learning about
one stimulus is transferred to new compounds comprising that
stimulus, has been studied in Pavlovian conditioning (e.g., Myers,
Vogel, Shin, & Wagner, 2001; Rescorla, 1997; Whitlow & Wagner,
1972) and human causal and contingency learning (e.g., Collins &
Shanks, 2006; Glautier, 2004; Soto, Vogel, Castillo, & Wagner,
2009).

Unfortunately, these two lines of research have been pursued
largely independently and researchers have shown little interest
in developing a unified theoretical framework to understand both
forms of generalization. Recently, Soto, Gershman, and Niv (2014)
provided such unified framework by extending the rational theory
of dimensional generalization (Shepard, 1987; Tenenbaum &
Griffiths, 2001) to the explanation of compound generalization
phenomena. In the following two sections, we briefly review this
theory, some of the relevant data that it attempts to explain and
the open issues addressed by the present work. We then describe
two experiments that aim to answer two of those open questions:
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Why are some dimensions integral and others separable? Are the
assumptions about integrality that are necessary to explain com-
pound generalization also important to explain dimensional
generalization?

1.1. Dimensional generalization and Shepard’s rational theory

The most common basic result of a dimensional generalization
experiment is that the response controlled by a stimulus orderly
decreases as the value of the stimulus in one or more continuous
dimensions is changed. An important insight in the study of
dimensional generalization was the idea that re-scaling of stimulus
dimensions to reveal ‘‘psychological dimensions’’ could lead to the
discovery of fundamental principles of generalization and to stim-
ulus representations that are useful for the study of other cognitive
processes (for a review, see Nosofsky, 1992).

Indeed, two fundamental results about dimensional generaliza-
tion have been found after such re-scaling. First, response probabil-
ity decays as an exponential function of the psychological distance
between a test stimulus and the original training stimulus
(Shepard, 1965, 1987). Second, when stimuli are varied in two
dimensions, the shape of the multidimensional generalization gra-
dient varies depending on the exact dimensions under study
(Cross, 1965; Shepard, 1987, 1991; Soto & Wasserman, 2010).
Here the distinction between separable and integral dimensions
becomes important (Garner, 1974; Shepard, 1991). Two dimen-
sions are separable if it is possible to perceive or attend to only
one dimension without attending to the other (e.g., size and orien-
tation of a line). These dimensions produce diamond-shaped gen-
eralization gradients (see Fig. 1a), in which there is more
generalization in the direction of the dimensions than in other
directions of space. Diamond-shape gradients are equivalent to
using a city-block metric to compute distances from coordinates
in a spatial representation of the generalization data, such as that
obtained from multidimensional scaling (MDS; Shepard, 1991).
Two dimensions are integral if it is not possible to perceive or
attend to only one dimension without attending to the other
(e.g., saturation and brightness). These dimensions produce circu-
lar generalization gradients (see Fig. 1b), in which there is more
or less the same generalization in any direction in the stimulus
space. Circular gradients are equivalent to using an Euclidean met-
ric to compute distances from coordinates in a spatial representa-
tion of the generalization data (Shepard, 1991).

Note that the fact that different sets of dimensions produce
multidimensional generalization gradients with different shapes
– or, equivalently, different metrics in a MDS representation – is
an empirical result. The usual mechanistic explanation for this
result is that different sets of dimensions interact differently dur-
ing perception. Separable dimensions, but not integral dimensions,
are processed independently and can be attended selectively
(Garner, 1974).

A full account of generalization requires answering not only
questions about mechanism, but also questions about function,
such as: Why is the shape of unidimensional generalization gradi-
ents exponential instead of some other shape? Why do some
dimensions seem to be processed separately and others integrally?
Rational theories of cognition (Anderson, 1990) provide answers to
such questions about function (Griffiths, Chater, Norris, & Pouget,
2012). Rational explanations propose hypotheses about what
aspects of the task of generalization could have led, through adap-
tation, to the observable features of generalization behavior.

Shepard (1987) proposed a rational theory in which the
properties of dimensional generalization are explained as resulting
from probabilistic inference. The theory proposes that when an
observer encounters a stimulus S1 followed by some significant

consequence, S1 is represented as a point in a psychological space.1

The stimulus is assumed to be a member of a natural class associated
with the consequence. This class occupies a region in the observer’s
psychological space, called a consequential region. The only informa-
tion that the observer has about this consequential region is that it
overlaps with S1 in psychological space. After observing a new stim-
ulus, S2, the inferential problem is to determine the probability that
S2 belongs to the same natural kind as S1—the same consequential
region—thus leading to the same consequence. This probability can
be obtained by ‘‘hypothesis averaging,’’ by taking all possible

Fig. 1. Contour plots of multidimensional generalization gradients predicted by the
consequential regions theory. The stimulus controlling a specific response is
represented by the coordinates (0,0) and the scale in each axis represents distance
from that stimulus along a specific perceptual dimension. Each line in a gradient
represents the set of all points in the bidimensional space that have the same
probability of generalization. These points of equal generalization probability
assume the shape of a diamond for separable dimensions (a), and the shape of
circles for integral dimensions using the direction hypothesis (b) and for integral
dimensions using the correlation hypothesis (c). To the left of each gradient several
examples of regions considered to evaluate the gradients are shown.

1 There are two important points to clarify about Shepard’s theory. First, when
Shepard’s first paper was published, Anderson’s ‘‘rational’’ level (Anderson, 1990) had
not yet been proposed. However, the most common interpretation of the theory is as
a rational analysis of generalization (e.g., Soto et al., 2014; Tenenbaum & Griffiths,
2001). Second, despite being a rational analysis, the theory still makes representa-
tional assumptions that should be clearly separated from its assumptions about the
generalization task (Fernbach & Sloman, 2011). The most important of these
assumptions is that the observer represents stimuli as points in a psychological
space. Importantly, explanations of generalization phenomena are a direct conse-
quence of how the theory formalizes the inferential task of generalization, with the
representational assumptions playing a minor role in such explanations.
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