Contents lists available at ScienceDirect

Materials Science in Semiconductor Processing

journal homepage: www.elsevier.com/locate/mssp

CrossMark

Investigations on the structural, electronic, elastic and thermodynamic properties of niobium silicide under high temperature and pressure

Ning Xu^{a,*}, Yue Xu^b, Jun Ma^c

^a Key Laboratory for Advanced Technology in Environmental Protection of JiangSu Province Yancheng Institute of Technology, Yancheng 224051, China

^b School of Material, The University of Manchester, Manchester M13 9PL, UK

^c Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China

ARTICLE INFO

Available online 11 October 2014

Keywords: NbSi₂ Structural Electronic Elastic Thermodynamic

ABSTRACT

A first principles investigation on the structural, electronic and elastic properties of NbSi₂ has been calculated using the plane wave pseudo-potential density functional theory (DFT) method. The lattice constants and elastic constants are obtained. The characters of the band structure and the density of states of niobium silicide (NbSi₂) are analyzed, which shows that NbSi₂ is metallic. The bulk, shear and Young's modulus for NbSi₂ are also calculated. The Debye temperature is calculated from the average elastic wave velocity obtained from the shear and bulk modulus. The thermodynamic properties including the heat capacity C_V and C_P , thermal expansion α , entropy *S* and Grüneisen parameter_T have been calculated at temperatures from 0 to 2100 K and pressures from 0 to 30 GPa using the quasi-harmonic Debye model. We also found that the present work can give a reference to those not to be experimentally investigated.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Transition metal disilicide are of much interest due to the variety of their physical properties and practical applications. These have also two crystal structures: i.e. the tetragonal $C1l_b$ structure and the hexagonal C40 structure. The $C1l_b$ structure has a comprehensive mechanical properties at high temperatures, but low fracture toughness at low temperatures [1,2]. C40 structure compounds are attractive material for microelectronic devices, due to their desirable physical properties, such as high melting temperature, low density and high temperature anomalous yield behavior [3,4]. Among these C40 compounds,

* Corresponding author. *E-mail address:* xuning196402@163.com (N. Xu).

http://dx.doi.org/10.1016/j.mssp.2014.09.030 1369-8001/© 2014 Elsevier Ltd. All rights reserved. NbSi₂ is a typical transition metal disilicide compounds. In recent years, there are many experimental and theoretical studies on the NbSi₂. In experimental studies, Chu et al. have studied the elastic properties of hexagonal C40 transition metal disilicides NbSi₂ and TaSi₂ at room temperature and low temperature using Resonant Ultrasound Spectroscopy (RUS) [5,6]. Laborde et al. have studied the phonon spectra of metallic disilicides VSi₂, NbSi₂ and TaSi₂ at 300 K and specific heat measurements between 10 K and 250 K by inelastic neutron scattering [7]. Antonov et al. have investigated the optical properties of NbSi₂ experimentally and theoretically [8]. Lasjaunias et al. have been also extensively studied the specific heat of NbSi₂ [9].

tHowever, there are few reports on the elastic and thermodynamic properties of C40 structure NbSi₂ with space group $P6_422(D_6^5)$ at high temperature and high pressure in theory. Therefore, the aim of this work is to

give a systematic theoretical study of elastic and thermodynamic properties of NbSi₂.

2. Method of calculations

The present first principles DFT calculations are done by means of the CASTEP code [10,11]. The interactions between the electrons and core ions are treated by using ultrasoft pseudopotentials [12]. For the geometry optimizations and property calculations, the exchange–correlation effects are mainly taken into account using the Ceperley–Alder data as parameterized by Perdew–Zunger (CA-PZ) of local density approximation (LDA) [13]. Kinetic-energy cutoff is 600 eV for the plane waves and Brillouin zone integration is performed using a $8 \times 8 \times 8$ Monkhorst–Pack *k*-point sampling for a primitive cell. The self-consistent convergence of the total energy is 1×10^{-5} eV atom⁻¹. Both the *k*-point sampling and cutoff have been tested to provide sufficient precision in our calculations.

In order to investigate the thermal properties of $NbSi_2$ at high temperature and high pressure we have used the quasi-harmonic Debye model as implemented in the Gibbs code [14]. The non-equilibrium Gibbs function $G^*(V; P, T)$ takes the form of

$$G^*(V; P, T) = E(V) + PV + A_{Vib}(\Theta(V); T)$$
(1)

where E(V), PV, and $\Theta(V)$ are the total energy per unit cell, the constant hydrostatic pressure condition, the Debye temperature, respectively. The Helmholtz free energy A_{Vib} can be written as [15]

$$A_{Vib}(\Theta;T) = nkT \left[\frac{9}{8}\frac{\Theta}{T} + 3\ln(1 - e^{-\Theta/T}) - D(\Theta/T)\right]$$
(2)

where $D(\Theta/T)$ and *n* are the Debye integral and the number of atoms per formula unit, respectively. Θ is expressed by [16]

$$\Theta = \frac{\hbar}{k} \left[6\pi^2 V^{1/2} n \right]^{1/3} f(\sigma) \sqrt{\frac{B_s}{M}}$$
(3)

M being the molecular mass per unit cell and B_S is the adiabatic bulk modulus, approximated by the static compressibility

$$B_S \cong B(V) = V \left\{ \frac{d^2 E(V)}{dV^2} \right\}$$
(4)

 $f(\sigma)$ is given by Refs. [17,18], and σ is the Poisson ratio. Therefore, the non-equilibrium Gibbs function $G^*(V; P, T)$ as a function of (V; P, T) can be minimized with respect to volume V

$$\left(\frac{\partial G^*(V;P,T)}{\partial V}\right)_{P,T} = 0 \tag{5}$$

By solving the Eq. (5), one can get the thermal equation of state V(P, T).

The constant volume heat capacity C_V and the constant pressure capacity C_P , the thermal expansion coefficient α and entropy *S* are taken as

$$C_V = 3nk \left[4D(\Theta/T) - \frac{3\Theta/T}{e^{\Theta/T} - 1} \right]$$
(6)

$$C_P = C_V (1 + \alpha \gamma T) \tag{7}$$

$$\alpha = -\frac{\gamma C_V}{B_s V} \tag{8}$$

$$S = nk[4D(\Theta/T) - 3\ln(1 - e^{-\Theta/T})]$$
(9)

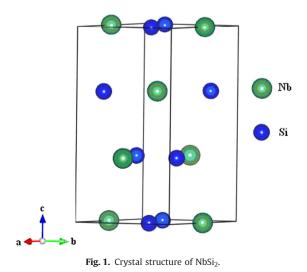
 γ is the Grüneisen parameter, which is defined as

$$\gamma = -\frac{d\ln\Theta(V)}{d\ln V} \tag{10}$$

3. Results and discussions

3.1. Structural properties

NbSi₂ was refined to be a hexagonal crystal with the space group P6₄22(D_6^5). The atomic positions are Nb 3c (0.5, 0, 0), Si 6i (0.167, 0.334, 0) [19]. The crystal structure is shown in Fig. 1.


All physical properties are in connected with the total energy. For instance, the equilibrium structural of a crystal is the lattice constants when the total energy obtains its minimum. Once the total energy is obtained, any physical property concerning the total energy can be determined. In a first step a set of calculations were done around optimized minima to obtain the equilibrium ground state energy–volume (E–V) data, where V_0 is the equilibrium volume at zero pressure, which are fitted to the Murnaghan equation of state [20]

$$\Delta E(V) = E - E_0 = B_0 V_0 \left[\frac{V_n}{B'_0} + \frac{1}{1 - B'_0} + \frac{V_n^{1 - B'_0}}{B'_0(B'_0 - 1)} \right]$$
(11)

where E_0 is the equilibrium energy at zero pressure.

The pressure *P* versus the normalized volume $V_n = V/V_0$ (where V_0 is the equilibrium volume at zero pressure) is obtained through the following relationship:

$$P = -\frac{dE}{dV} = \frac{B_0}{B'_0} \left[V_n^{-B'_0} - 1 \right]$$
(12)

Download English Version:

https://daneshyari.com/en/article/729256

Download Persian Version:

https://daneshyari.com/article/729256

Daneshyari.com