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A B S T R A C T

The extent that the structure of cognitive abilities changes across the lifespan or across ability levels is an
ongoing debate in intelligence research. The differentiation-dedifferentiation theory states that cognitive abil-
ities differentiate until the beginning of maturity, after which relations increase or dedifferentiate until late
adulthood. Spearman's law of diminishing returns proposes that cognitive abilities are more differentiated at
higher ability levels. However, the evidence for ability differentiation and age dedifferentiation, in particular, is
mixed. A prerequisite for the evaluation of dedifferentiation processes, expressed as changes in ability factor
correlations, is the invariance of intelligence across age. However, a strong interpretation of the dedifferentiation
hypothesis states that changes in model parameters, such as factor loadings and residual variances, can also be
indicative of dedifferentiation. Traditional statistical tools for testing measurement invariance are not feasible
for studying parameter changes over a continuous context variable, such as age. However, a recently developed
non-parametric method, Local Structural Equation Modeling (LSEM), closes this gap. LSEM is a powerful and
versatile method for studying structural changes; it is an improvement over competing methods, because it
avoids artificial categorization of a moderator that is continuous in nature and also renounces the determination
of a priori parameter functions. Using cross-sectional data from the standardization sample of the Woodcock-
Johnson IV Intelligence Test Battery, we present an application and extension of the LSEM approach to ac-
commodate two moderator variables. Specifically, we studied measurement invariance across two context
variables, age and years of education, in models testing the unique moderating effect of each, and in a model
examining their combined effects. We found no significant moderating effects of age and no effects of years of
education on the relation between fluid and crystallized intelligence. Moreover, an interaction of age and years
of education with respect to model parameter change cannot be supported.

1. Introduction

For more than a century, the structure and stability of cognitive
abilities have been a major theme in intelligence research (e.g.,
Wilhelm & Engle, 2004). In Cattell's (extended) gf–gc-theory (Cattell,
1971; Horn & Noll, 1997), reasoning (i.e., fluid intelligence, gf) and
declarative knowledge (i.e., crystallized intelligence, gc) are the most
prominent factors. Gf is conceptualized as the decontextualized ability
to solve abstract problems, while gc represents a person's knowledge
gained during life by acculturation and learning (Cattell, 1971). In a
pivotal study, Carroll (1993) reanalyzed 461 data sets by employing
exploratory factor analysis with oblique rotation to higher-order factor

matrices, resulting in the three-stratum theory of cognitive abilities. A
synthesis of Cattell's and Carroll's models has led to the Cattell-Horn-
Carroll (CHC) model (McGrew, 2005, 2009), which constitutes a pre-
liminary endpoint in theory building.

In the present study, we examined age- and education-related
changes in the covariance structure of gf and gc. Until now, the influ-
ence of covariates has mostly been investigated independently (see also
Tucker-Drob, 2009), which is especially problematic in lieu of incon-
sistent findings on the relation of education and age on cognitive de-
cline in late adulthood (e.g., Anstey & Christensen, 2000). To close this
gap in research, we studied the combined influence of age and educa-
tion on the structure of cognitive abilities.
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1.1. Age-related changes in the structure of intelligence

A prominent theory about the structural development of cognitive
abilities claims neointegration or dedifferentiation in old age (Baltes,
Staudinger, & Lindenberger, 1999). According to this dedifferentiation
hypothesis, the g-factor explains more variance with increasing age.
With respect to the gf-gc model, an increasing correlation between the
two factors across age could be seen as support for the dedifferentiation
theory. The reason for the lower complexity of the structure of in-
telligence in old age is ascribed to neurobiological constraints on cog-
nitive functioning (Baltes et al., 1999). In a refinement of the original
theory, two types of dedifferentiation are assumed: dynamic and non-
dynamic dedifferentiation (Lövdén & Lindenberger, 2005). The dynamic
differentiation theory states that the development of cognitive abilities in
old age is mainly influenced by common sources, resulting in higher
correlations between different cognitive abilities. For example, the
decline in gf limits gc expression and accumulation. In contrast, the
non-dynamic dedifferentiation theory states that changes in different
cognitive abilities are due to a common developmental cause which
influences all cognitive abilities with an invariant strength with in-
creasing age. Thus, an increase in the correlations across abilities is
driven by comparative age trends for the different abilities.

Several empirical studies have examined age-related changes in the
structure of intelligence (Zelinski & Lewis, 2003). We present a limited
overview in Table 1, focusing on studies with adult samples and high-
lighting the different methodological approaches. The empirical results
are inconsistent. On one hand, there is evidence supporting the ded-
ifferentiation of cognitive abilities in adults (e.g., de Frias, Lövdén,
Lindenberger, & Nilsson, 2007; Hertzog, Dixon, Hultsch, & MacDonald,
2003; Hülür, Ram, Willis, Schaie, & Gerstof, 2015; Li et al., 2004). On
the other hand, there is even more empirical evidence against the
dedifferentiation theory (e.g., Batterham, Christensen, & Mackinnon,

2011; Bickley, Keith, & Wolfle, 1995; Hildebrandt, Wilhelm, &
Robitzsch, 2009; Juan-Espinosa et al., 2002; Niileksela, Reynolds, &
Kaufman, 2013; Taub, McGrew, & Witta, 2004; Tucker-Drob, 2009;
Tucker-Drob & Salthouse, 2008; Whitley et al., 2016; Zelinski & Lewis,
2003). In the same vein, the relation between gf and gc over age is
inconsistent. Some studies found an increasing correlation between the
two factors in old age, which is in line with the dedifferentiation theory
(e.g., Hayslip & Sterns, 1979; Li et al., 2004). In contrast, some studies
found the correlation between gf and gc was smaller for the elderly in
comparison to younger adults (e.g., Cunningham, Clayton, & Overton,
1975; Tucker-Drob & Salthouse, 2008).

Overall, when the sample size is sufficient and age groups are
narrow, analysis with Multi-Group Confirmatory Factor Analysis
(MGCFA, see 1.3 for a description), and methods using age as a con-
tinuous variable support invariance of cognitive abilities across age.
However, the results of these studies should be interpreted with caution
because of limitations to their study designs and statistical methods
used. In order to conduct a decent test of dedifferentiation, the study
should meet following criteria. First, the age range in the examined
sample should be large enough to reasonably expect dedifferentiation
effects. This claim requires the inclusion of persons of old age (> 60).
Second, since age is a naturally continuous variable, it should be treated
as such when used as a context variable. Third, indicators reflecting
more than one ability should also be examined for changes in their
associations over age. Fourth, one needs to account for the potentially
differing reliability of indicators over age, for example by examining
correlations between latent variables instead of manifest variables.
Fifth, irrespective of the methodological approach, a sufficiently het-
erogeneous sample of an adequate size is necessary to produce reliable
and generalizable results. Finally, Hofer, Flaherty, and Hoffman (2006)
point to the possibility of mean-induced association in cross-sectional
data, which means that ability test correlations are inflated due to age-

Table 1
Overview of studies examining age-related dedifferentiation of intelligence.

Study N Age range Design Model Statistical method

Baltes et al. (1980) 109 (X) 60–89 (✓) Cross-sectional Gf-gc model (✓) CFA (variance accounted for by g-
factor)

(X)

de Frias et al. (2007) 1000 (✓) 35–80 (✓) Longitudinal
(3 occasions over
10 years)

Correlated factor model (✓) Latent growth modeling (X)

Hayslip and Sterns (1979) 162 (X) 17–26, 39–51, 59–76 (X) Cross-sectional Gf-gc model (✓) Correlation of manifest composite
scores

(X)

Hertzog et al. (2003) 303 61–91 (✓) Longitudinal (6 years) Correlated factor model (✓) Latent change model
Age as a covariate

(X)

Hülür, Ram, Willis, et al.
(2015)

419 (✓) 22–106 (✓) Longitudinal (up to
49 years)

(✓) Multilevel modeling (X)

Li et al. (2004) 291 (X) 6–89 (✓) Cross-sectional Gf-gc model (✓) Correlation of manifest composite
scores
Principle component analysis

(X)

Batterham et al. (2011) 687 (✓) 70–97 (✓) Longitudinal g-factor model (X) MFA (X)
Bickley et al. (1995) 2201 (✓) 6–79 Cross-sectional Three-Stratum MGCFA
Cunningham et al. (1975) 75 (X) 19.05 (SD=1.36),

60–79
(X) Cross-sectional Gf-gc model (✓) Correlation of manifest composite

scores
(X)

Hildebrandt et al. (2009) 448 (✓) 18–82 (✓) Cross-sectional g-factor model (X) MGCFA, LMS, LSEM (✓)
Juan-Espinosa et al. (2002) 1369 (✓) 16–94 (✓) Cross-sectional Higher order g-factor

model
(✓) Exploratory, factor analysis,

MGCFA
(X)

Niileksela et al. (2013) 2200 (✓) 16–90 (✓) Cross-sectional CHC model (✓) MGCFA (X)
Taub et al. (2004) 2450 (✓) 16–89 (✓) Cross-sectional Higher order g-factor (✓) MGCFA (X)
Tucker-Drob (2009) 6273 (✓) 4–101 (✓) Cross-sectional CHC model MFA (X)
Tucker-Drob and Salthouse

(2008)
2227 (✓) 24–91 (✓) Cross-sectional g-factor and correlated

factor model
(✓) CFA (variance accounted for by g-

factor), MGCFA, MFA
(X)

Whitley et al. (2016) 49,258 (✓) 16–100 (✓) Cross-sectional g-factor model (X) MFA, LSEM (✓)
Zelinski and Lewis (2003) 289 (X) 30–97 (✓) Longitudinal Correlated factor model (✓) MGCFA (X)

Note. CFA=Confirmatory Factor Analysis, CHC model= Cattell-Horn-Carroll model, gc= crystallized intelligence, gf= fluid intelligence, MFA=Moderated
Factor Analysis, MGCFA=Multi-Group Confirmatory Factor Analysis, LSEM=Local Structural Equation Models; brackets indicate if defined quality criteria are (✓)
or are not (X) met: sufficient sample size with an even distribution across the age range and a sufficient number of participants per estimated parameter, age range
includes old persons (> 60) and allows for continuous age examination, model includes associations between different cognitive abilities, method treats age as a
continuous variable and uses narrow-age cohorts.
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