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A B S T R A C T

From the genetic side, giftedness in cognitive development is the result of contribution of many common genetic
variants of small effect size, so called polygenicity (Spain et al., 2016). From the environmental side, educa-
tionalists have argued for the importance of the environment for sustaining early potential in children, showing
that bright poor children are held back in their subsequent development (Feinstein, 2003a). Such correlational
data need to be complemented by mechanistic models showing how gifted development results from the re-
spective genetic and environmental influences. A neurocomputational model of cognitive development is pre-
sented, using artificial neural networks to simulate the development of a population of children. Variability was
produced by many small differences in neurocomputational parameters each influenced by multiple artificial
genes, instantiating a polygenic model, and by variations in the level of stimulation from the environment. The
simulations captured several key empirical phenomena, including the non-linearity of developmental trajec-
tories, asymmetries in the characteristics of the upper and lower tails of the population distribution, and the
potential of poor environments to hold back bright children. At a computational level, ‘gifted’ networks tended
to have higher capacity, higher plasticity, less noisy neural processing, a lower impact of regressive events, and a
richer environment. However, individual instances presented heterogeneous contributions of these neuro-
computational factors, suggesting giftedness has diverse causes.

Introduction

The causes of giftedness in cognitive or physical abilities are com-
plex, involving both genetic and environmental contributions
(Sternberg & Davidson, 2005). Humans with exceptional abilities may
have innate potential, but skills must be developed over time, and an
individual requires a combination of ambition, opportunity and a
willingness to work in order to realise their potential; in this sense, Wai
(2014) described experts as born then made. Moreover, genetic and
environmental factors may be correlated. For example, parents may
identify an indication of talent in their children and encourage the ta-
lent to flourish through providing opportunities and resources
(Ericsson, Nandagopal, & Roring, 2005). Talented children may them-
selves seek out the environments and activities that will foster devel-
opment of their abilities (Ericsson, 2014).

Recent work in behavioural genetics has focused on genetic

contributions to giftedness. Evidence from twin studies in several
countries suggested a genetic contribution to cognitive performance in
the high range (Haworth et al., 2009). In these data, genetic influences
explained 50% of the variance in those performing in the top 15% of
population distributions. Molecular genetics using genome wide asso-
ciation (GWA) analyses suggest that the causes of low performance in
the bottom tail of the distribution and high performance in the upper
tail may be different, at least for intelligence. Spain et al. (2016) found
that while the bottom tail was associated with increased incidence of
genetic mutations (rare alleles), the upper tail had, if anything, a re-
duced frequency of rare alleles. The upper tail appears to be driven by
the same genetic influences that operate throughout the rest of the
population distribution, with the discontinuity at the lower extreme
being the sole exception (Shakeshaft et al., 2015). The wider picture is
that genetic contributions to intelligence stem from many common
genetic variations each of small effect, known as the ‘polygenic’ model
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(Plomin & Deary, 2015); rare functional variants are more often det-
rimental than beneficial to intelligence.

Lykken (2006); see also Simonton, 1999, Simonton, 2005 argued
that the genetic contributions to giftedness were multiplicative, such
that if any of a set of genetic variants was absent, this would negate a
gifted outcome – the so-called emergenic model. However, twin studies
have suggested the genetic contributions to giftedness for intelligence
appear to be additive in effect rather than dominant (that is, identical
twins are not more than twice as similar as fraternal twins). Plomin and
Deary (2015) concluded that twin studies of intelligence consistently
find the genetic influence to be largely, if not entirely, additive for high
intelligence as well as the entire distribution of intelligence (see also
Plomin & Haworth, 2009) – although small or rare non-additive effects
cannot be definitely ruled out due to the lack of statistical power to
detect them. In sum, then, genetic influence on cognitive ability appears
to involve many genes each contributing small effects; these contribu-
tions are additive; and for high ability, these genes are common var-
iants. The innately gifted individual has been lucky enough to inherit
cognitively beneficial versions of many genes.

Behaviour genetics generates these insights from correlational
analyses. However, genetic effects must ultimately unpack in causal
properties of the brain and body. With respect to the former, such
properties may be construed in terms of neural mechanisms and neu-
rocomputational properties. In these terms, gifted performance is the
result of many small advantageous aspects of neurocomputation, po-
tentially across multiple systems, and their contribution to the devel-
opment and maintenance of cognitive and physical abilities.

A separate literature in educational achievement has focused on
environmental influences on the development of children with different
levels of ability. Taking a long-term perspective, this literature high-
lights the role of socio-economic status (SES) in either fostering or
holding back early potential. In a seminal paper, Feinstein (2003a)
presented an analysis of longitudinal data, grouping children by cog-
nitive ability at 22months, and then following these children through
to 10 years of age. Children from low SES families (where SES was
defined by parental education level) did not, on average, ‘overcome the
hurdle of lower initial attainment, combined with continued low input’
(Feinstein, 2003b, p. 30). But notably, social inequalities also appeared
to dominate the early positive signs of academic ability for most of
those low SES children who did well early on. The message that pol-
icymakers took from these data was that bright children from poorer
families tend to fall back relative to more advantaged peers who have
not performed as well (Feinstein, 2015).

This pattern is depicted in later Fig. 1(a) replotted from Feinstein
(2003b). It shows the population rank order of children classified by
ability in the top quartile and bottom quartile on cognitive tests at age
22months, and then those groups split into high SES (top 24% of po-
pulation) and low SES (bottom 13%). The top quartile ability / low SES
group shows a declining mean rank across age, while the bottom
quartile ability / high SES group shows an increasing mean rank. There
has been some subsequent debate about the shape of this function:
whether the rank trajectories of these two groups really cross, and
whether some of the pattern is explained by regression to the mean of
initially extreme scores, due to measurement error in the repeated
cognitive testing (Jerrim & Vignoles, 2013). However, there is con-
sensus on the main finding: the benefits of good early development can
be substantially eroded by social class effects.

Nevertheless, as with data from genetic studies, investigations of
environmental influences on the development of children with high
ability remain correlational. They stand in need of a mechanistic ac-
count that identifies how the proxy of SES translates into actual influ-
ences that shape the development of cognitive abilities in children.

In this paper, we use neurocomputational modelling of cognitive
development to focus on the mechanistic basis of genetic and en-
vironmental influences on high ability. Considering development across
a whole population, artificial neural network models are employed to

integrate data across levels of description: from the genetic level in
terms of influences on neurocomputation; from the environmental level
in terms of influences on the level of stimulation children receive from
the environment; and from the behavioural level, in terms of scores on
cognitive tests.

In previous work, we have shown how modelling cognitive devel-
opment using populations of artificial neural networks can provide a
unified framework to consider individual differences within a devel-
opmental framework and integrate across levels of description
(Thomas, Forrester, & Ronald, 2016). We have shown that observed SES
effects on language development can be simulated by modulating the
richness of linguistic experience received by children in families of
different SES levels (Thomas, Forrester, & Ronald, 2013). Moreover,
this model simulated the asymmetric quality of high and low tails ob-
served in genetic studies: SES predicted whether simulated individuals
would fall in the top 10% of the population, but not if they would fall in
the bottom 10%. This is because there are many ways to fail but few to
succeed: therefore the predictive power of a single factor is reduced for
poor outcomes. This novel prediction was subsequently confirmed by a
re-analysis of empirical data collected by Bishop (2005). We also in-
vestigated the causes of delayed development in this model framework,
following the trajectories of simulated children who exhibited early
delay (Thomas & Knowland, 2014). Of these individuals, two thirds
subsequently resolved to the normal range later in development. This
replicates a pattern observed in the empirical literature (e.g., Dale,
Price, Bishop, & Plomin, 2003). The model once more produced a novel
prediction: that SES should predict variance in the final language ability
level of children whose early delay resolved, but not in those where the
delay persisted. Once more, this prediction was confirmed by the em-
pirical data (Bishop, 2005).

The modelling framework has therefore demonstrated its initial
adequacy to investigate the mechanistic basis of individual differences.
In the current work, the Thomas et al. (2013) model is employed to
address the developmental trajectories of ‘gifted’ simulated children
falling in the upper tail of early performance. Our key questions are as
follows: (1) For those simulated individuals showing high early ability,
what are the neurocomputational and environmental factors that pre-
dict the long-term outcome of developmental trajectories? (2) In a
mechanistic model of experience-dependent development, where all
sources of variation are specified and there is no measurement error,
can the Feinstein graph be replicated, with the population rank order of
gifted individuals from lower SES backgrounds subsequently declining
across development? (3) If such a decline is observed, must the com-
putational causes of the changes in rank be entirely environmental, as
proposed? (4) If changes in population rank are not entirely environ-
mental, can the risk of subsequent decline be predicted from beha-
vioural measures taken when early giftedness is first recognised?

1. Computational modelling

1.1. Simulation details

1.1.1. Base model
The base model was drawn from the field of language development,

and specifically the acquisition of the English past tense within inflec-
tional morphology. The model is used here to stand for more general
models of cognitive development utilised in cognitive modelling (see
e.g., Mareschal & Thomas, 2007). The model employed an artificial
neural network architecture.

A backpropagation network was used to learn to output the past-
tense form of a verb from an input vector that combined a phonological
representation of the verb stem and lexical-semantic information
(Joanisse & Seidenberg, 1999). The architecture is shown in Fig. 2.

The training set was the “phone” vocabulary from Plunkett and
Marchman (1991). This comprised an artificial language set con-
structed to reflect many of the important structural features of English
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