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Here we compute the association between cognitive differences and variations in brain efficiency within a
predefined structural network. The regions comprised by the network of interest were selected according to
the parieto-frontal integration theory (P-FIT) (Jung & Haier, 2007). Local and global efficiency was quantified
for this network. The former reflects specialization within the network, whereas the latter benefits long-
distance interactions and reflects integration over the whole network. Fluid reasoning, working memory capac-
ity, and processing speed were the measured cognitive factors. Forty-two young healthy women were the partic-
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Connectivity 1pfants in the present study.AThese were the main findings: a) the precuneus, th_e m_lddle frontal gyrus, the pars
Graph theory triangularis, and the superior frontal gyrus showed the greatest connectivity indices, supporting the special

P-FIT role of discrete parietal and frontal regions within the network, b) network efficiency was remarkably related
Cognition with variations in working memory capacity, c) fluid reasoning showed positive correlations with network effi-
Diffusion tensor imaging ciency, and d) processing speed was unrelated with network efficiency. The findings underscore brain network

analyses for studying cognitive differences.
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1. Introduction

There are a number of reports addressing whether it is possible to
reliably identify neural substrates of cognitive differences using var-
ious structural and functional neuroimaging approaches (Colom,
Karama, Jung, & Haier, 2010; Colom & Thompson, 2011; Deary, Penke, &
Johnson, 2010; Nisbett et al., 2012; Yarkoni et al., 2011). Jung and Haier
(2007) proposed the parieto-frontal integration theory (P-FIT) for
highlighting the commonalities underlying published neuroimaging
studies of general cognitive ability (intelligence) and reasoning. This
model has been used as a framework for interpreting a range of research
findings (Basten, Hilger, & Fiebach, 2015; Cole, Yarkoni, Repov, Anticevic,
& Braver, 2012; Colom et al., 2009; Ebisch et al., 2013; Langer et al., 2012;
Santarnecchi, Rossi, & Rossi, 2015; Wang et al., 2011).

These studies are mainly exploratory and results are under the influ-
ence of several sources of variability, such as the nature of the sample
analyzed, the brain property measured, the neuroimaging approach
employed or the cognitive construct studied. The direct consequence
is a mixture of findings hardly interpretable in terms of reliable brain
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architecture and mechanisms underlying individual differences in cog-
nitive performance, as reviewed by Colom (2014).

In this regard, using fMRI Cole et al. (2012) underscored the role of the
lateral prefrontal cortex. Also relying on fMRI, Ebisch et al. (2013) pro-
posed that the network comprised by the anterior insular cortex, the dor-
sal anterior cingulate cortex, and the medial frontal cortex contributes to
the integration of common high-order cognitive requirements. Consider-
ing high-density EEG, Langer et al. (2012) highlighted the central role of
the parietal cortex. Applying voxel-based morphometry (VBM) and
surface-based morphometry (SBM), Colom et al. (2013) found that the
middle frontal gyrus seems to support both fluid intelligence and working
memory capacity. Large-scale voxel-based lesion structural studies sup-
ported the P-FIT model underscoring the basic role of frontal and parietal
regions along with their communication pathways (Barbey et al., 2012;
Barbey, Colom, Paul, & Grafman, 2014; Gldscher et al., 2010).

As pointed out by Martinez et al. (2015), these exploratory anal-
yses are informative and increase our knowledge, but observed results
are open to varied interpretations (Haier et al,, 2014a & 2014b;
Hampshire & Owen, 2014; Hampshire, Highfield, Parkin, & Owen,
2012). The brain is a general-purpose complex dynamic system
(Burgaleta, Johnson, Waber, Colom, & Karama, 2014, Colom et al.,
2013; Fjell et al., 2013; Schnack et al., 2014) and different individuals
might rely on distinguishable brain networks for coping with a given
cognitive requirement (Karama et al., 2011). But there are still further
possibilities. For instance, not all brain properties may be equally
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relevant for explaining cognitive differences (Vuoksimaa et al., 2014)
and different neuroimaging approaches might not capture individual
differences in brain structure and function with the same sensitivity
(Martinez et al., 2015). Finally, variability in tissue composition or acti-
vations of discrete brain regions might be unrelated with behavioral
individual differences (Escorial et al., 2015, Mueller et al., 2013). Per-
haps the key is how these regions communicate for working in an inte-
grated way (Barbey et al., 2014; Santarnecchi et al., 2014).

Based on this latter perspective, the main research question ad-
dressed in the present study is: are the interactions among specific
gray matter processing units through white matter pathways related
with cognitive differences? Finding an answer requires using a network
approach. There are some reports analyzing functional networks, main-
ly derived from resting state records (Shehzad et al., 2014; Song et al.,
2008; Van den Heuvel, Mandl, Kahn, Pol, & Hilleke, 2009) and, again,
inconsistencies can be seen in the reported results (Li & Tian, 2014,
Santarnecchi et al., 2014). Network analyses relating variations in struc-
tural connectivity with cognitive performance differences are still rare.
Li et al. (2009) hypothesized that intelligence differences are associated
with brain structural organization (greater global efficiency of the brain
physical network). Their report found a positive correlation between
local efficiency and IQ in several regions of the brain: parietal, temporal,
occipital, and frontal lobes, along with three subcortical structures.
These results can be interpreted as consistent with the P-FIT framework.

Here we select a set of discrete regions of interest (ROIs) specifically
nominated by the P-FIT model"™ (Fig. 1). These regions were organized
according to successive stages involved in information processing:
1) processing of sensory information (temporal and occipital regions),
2) symbolism, abstraction, and elaboration (parietal areas), 3) hypothe-
sis testing (frontal lobes), and 4) response selection (anterior cingulate)
(Appendix 2 lists the selected regions/nodes). Local and global network
efficiency was evaluated. Latora and Marchiori (2001) introduced the
concept of network efficiency by quantifying variations in information
flow within the network: “by using efficiency, small-world networks
are seen as systems that are both locally and globally efficient”. After-
wards, we computed the relationship between individual differences
in structural efficiency within the predefined network and cognitive dif-
ferences (as assessed by fluid reasoning, working memory capacity, and
processing speed). As noted, small-world networks are locally and glob-
ally efficient, and, therefore, individuals with better cognitive scores will
show greater fault tolerance (local efficiency) and better long-distance
interactions (global efficiency) (Latora & Marchiori, 2001). From this
perspective, we predict substantial associations between structural effi-
ciency within the P-FIT network and cognitive differences: the higher
the efficiency, the better the cognitive performance.

2. Method
2.1. Participants

Forty-two young women (mean age = 18.3, SD = 1.2) participated
in the study. They were psychology undergraduate paid volunteers with
no history of psychiatric or neurological illness. Written informed con-
sent was obtained in accordance with regulations of Fundacién CIEN-
Fundacién Reina Sofia (Madrid). The local ethical committee approved
the study.

2.2. Psychological measures

Participants completed a set of tests and tasks measuring fluid rea-
soning (Gf), working memory capacity (WMC), and processing speed
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(PS). Gf represents the ability for abstract reasoning and novel problem
solving (Cattell, 1987). WMC is devoted to the mental manipulation of
varied amounts of information in the short-term. This cognitive mecha-
nism is usually measured by dual tasks combining processing and stor-
age requirements (Colom, Abad, Quiroga, Shih, & Flores-Mendoza, 2008,
Martinez et al., 2011). PS captures the speed by which simple mental
operations can be completed and it is measured by reaction time in
the face of low-level processing requirements (Colom et al., 2008).

These psychological constructs were measured by three tests or
tasks each for obtaining representative aggregated scores beyond the
specificities associated with the concrete measures (Colom et al.,
2013; Haier et al.,, 2009). The Raven Advanced Progressive Matrices
Test (RAPM; Raven, Raven, & Court, 2004a), the inductive reasoning
subtests from the Primary Mental Abilities Battery (PMA-R; Thurstone
& Thurstone, 1968a), and the abstract reasoning subtest from the Differ-
ential Aptitude Test Battery (DAT-AR; Bennett, Seashore, & Wesman,
2005a), measured fluid intelligence (Gf). WMC was assessed by the
(verbal) reading span task (Kane et al., 2004a), the (numerical) compu-
tation span task (Ackerman, Beier, & Boyle, 2002a), and the (spatial) dot
matrix task (Miyake, Friedman, Rettinger, Shah, & Hegarty, 2001a). Fi-
nally, processing speed was measured by simple verbal, numerical,
and spatial tasks. A detailed description of these tests and tasks can be
found in Appendix 1.

2.3. MRI data acquisition

Participants were scanned (after psychological assessment) ona3 T
General Electric MR scanner (General Electric Healthcare, Fairfield, CT),
using a whole-body radiofrequency (RF) coil for signal excitation and
quadrature 8-channel brain coil for reception. The acquisition protocol
consisted of: (1) High resolution 3D T1-weighted Gradient Echo-SPGR
with TR/TE/flip angle of 9.1 ms/4.1 ms/10°, FoV = 256 mm, matrix =
256 x 256 and slice thickness of 1 mm yielding a 1 mm? voxel size;
(2) diffusion weighted images (DWI) in 45 non-collinear encoding di-
rections and a b value of 1000 s/mm? with a single-shot spin echo
echo-planar sequence with TR/TE of 12,700/88.3 ms, NEX = 2, FoV =
240 mm, reconstruction matrix of 96 x 96 and slice thickness =
2.4 mm resulting in 2.5 x 2.5 x 2.4 mm? voxels, and two additional im-
ages with no diffusion sensitization b = 0 s/mm? (by); (3) two gradient
echo images with different echo times, 6.5 and 8.5 ms, TR of 600 ms and
flip angle of 45° and same spatial resolution as the DWI.

2.4. Brain parcellation

We used Freesurfer (version 5.1.0) to segment each subject's cortex
in 66 anatomical cortical regions and 16 sub-cortical regions (Fischl
et al.,, 2004) (Appendix 2). From these 82 regions, twelve regions
by each cerebral hemisphere, nominated by the P-FIT network, were
selected (Jung & Haier, 2007). The selected twenty-four regions are
depicted in Fig. 1.

2.5. Structural connectivity

DWI images were pre-processed using the FMRIB's Diffusion Tool-
box (FDT). Correction for motion and geometrical distortion due to
eddy currents was performed with the eddycorrect tool in FDT, taking
as the reference image the average of the two by volumes. Non-brain tis-
sue from the average by image was removed using the FMRIB's Brain
Extraction Toolbox, BET (Smith, 2002). The obtained brain mask was
applied to the rest of the DWI images. We build the inhomogeneity
fieldmap using the two gradient echo images with different echo
times. Using FUGUE-FSL, we considered the fieldmap image to unwarp
the DWI images, in order to correct the geometric distortion and signal
loss due to the magnetic field inhomogeneities. The Diffusion Toolkit
(DTK — http://www.trackvis.org) was used to fit the diffusion tensor
model using a least squares approach.
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