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a b s t r a c t

Statistical parametric models are proposed to explain the values of the Planck constant obtained by com-
paring electrical and mechanical powers and by counting atoms in 28Si enriched crystals. They assume
that uncertainty contributions – having heterogeneous, datum-specific, variances – might not be
included in the error budgets of some of the measured values. Model selection and model averaging
are used to investigate data consistency, to identify a reference value of the Planck constant, and to
include the model uncertainty in the error budget.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The definition of a system of units on the basis of conventional
values of fundamental constant of physics [1] is motivating efforts
on determinations of the Planck constant [2]. The most accurate
data come from the comparison of mechanical and electrical pow-
ers by watt-balance experiments [3,4] and the count of the atoms
in 28Si enriched silicon balls [5]. Four h determinations comply
with the accuracy required to make the kilogram redefinition fea-
sible [6–10]. A statistical analysis of these results is necessary to
check their consistency and to chose a reference value of the Planck
constant.

Data analysis is usually carried out by selecting a model and by
processing the measurement results as if they had generated by it.
This approach ignores the model uncertainty and can lead to
underestimates of the uncertainty, to overconfident inferences,
and to decisions that are more risky than one thinks they are.
Questions are: How accurately does a model explain the data
and what is the impact of the model uncertainty on the measurand
estimate and the inferences that we draw from the measurement
results? Given an uncertain data model and a measurand estimate
based on it, how can the total uncertainty of the measurand value
be assessed?

Probability calculus can select the model most supported by the
data and include the uncertainty into the analysis and uncertainty

budget [11]; an example investigating the choice of the degree
when fitting a polynomial to noisy data is given in [12]. The choice
of a measurand value from inconsistent data-sets is investigated in
[13–16].

This paper builds on these works and delivers some additional
results. Firstly, it considers models where the standard deviations
of a data subset – the empty set and the whole data set included
– might be larger than the associated uncertainties; but, we do
not know what this subset is. Secondly, it chooses the uninforma-
tive prior distribution of the unknown standard-deviations by
requiring that Gaussian sampling-distributions of the measure-
ment results are equiprobable. A novelty is that, if these
standard-deviations are not of interest, marginalization allows an
analytical expression of the measurement-result distributions to
be given, no matter what the standards deviations – greater than
or equal to the associated uncertainties – may be. Eventually, since
one of the subset does apply, this paper tests the data consistency
by comparing the probability of each subset is the right one given
the data and suggests a reference value of the Planck constant by
averaging over all the subsets. In this way, all the data determine
the reference value, no measurement result is excluded, and none
is considered fully reliable or suspicious.

2. Planck constant values

The starting point of the analysis is the list in Table 1. In 2014,
the Bureau International des Poids et Mesures (BIPM) carried out a
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campaign of mass calibration with respect to the international pro-
totype, in anticipation of the redefinition of the kilogram [17]. This
brought to light an offset of the BIPM as-maintained mass unit,
which was traceable to the prototype in 1992. Therefore, the mass
values used in the watt-balance and atom counting experiments,
were suitably corrected.

The IAC’s NA values are converted into Planck constant values
via the molar Planck constant
NAh ¼ 3:9903127176ð28Þ � 10�10 J s mol�1, which has a negligible
uncertainty [18]. The correlation of the NA values reported in
2011 and 2015 by the IAC is investigated in [19], which gives also
the mean of the correlated values. To avoid complications due to
the correlation, the input datum for this analysis is the mean of
the 2011 and 2015 IAC’s values.

The values selected for this analysis are labelled from 1 to 3 in
Table 1; they are shown in Fig. 1. The BIPM estimated the calibra-
tion uncertainty as 3 lg; this uncertainty affects all the mass val-
ues in the watt-balance and atom counting experiments. The
Table 1 gives the fractions of this systematic component of the
uncertainty budget; the correlation of any pair of h values can be
obtained by multiplying the pair’s systematic fractions.

In 2012, the consultative committee for mass and related quan-
tities of the International Committee for Weights and Measures
recommended that ‘‘. . .the values provided by the different experi-
ments be consistent at the 95% level of confidence” [20]. Since the
confidence level is a concept associated to the Neyman’s confi-
dence interval [21,22], the meaning of this recommendation is
not very clear.

A way to examine the data consistency might be the signifi-
cance test of Fisher [11]. Assuming that the data are independent
normal-variables having the same mean h and standard deviations

ri equal to the associated uncertainties, ui – which is the
consistent-data or null hypothesis, a test statistic is the Pearson
v2 variable [23]. By choosing a 5% significance level, the expected
95% quantile is v2

0:95 ¼ 6:0. For this data set, the observed value is
v2 ¼ 3:8; since this value is less than the v2

0:95 rejection level, the
consistent-data hypothesis is accepted. The test ensures that the
probability of rejecting the consistent-data model when it is true
is 5%, but to accept the consistent-data hypothesis as correct is
an argumentum ad ignorantiam fallacy.

In order to assess the data consistency, we must calculate the
probability of the null hypothesis; this requires to include it into
a wider hypothesis space. To this end, we consider underestima-
tions of the data uncertainties. Accordingly, each datum xi is
thought to be a random variable having mean h and variance
r2

i ¼ u2
i þ k2i , where, when reporting the measurement uncertainty,

a datum-specific contribution to the variance, k2i , was omitted. It is
also possible that some measurement uncertainty was correctly
evaluated – that is, for these measurements, ri ¼ ui. Of course,
all the measurement uncertainty might be correctly evaluated.

Our assumption is that there exists a subset of good data –
which might be the empty set or the full data list – having correct
uncertainty assessments; its elements xi are independent realiza-
tions of random variables having variances u2

i . For the remaining
data, the uncertainties ui are only lower bounds to the standard
deviations, that are additional model parameters. The good data
can not be predetermined; instead, all the subsets will be taken
in turn as the sought good-data subset. The final h estimate will
be obtained by model averaging using the probability of the each
subset being the good one.

3. Theoretical framework

Before going into the specific application to the data in Table 1,
this section outlines the theoretical framework of the analysis.

3.1. Model selection

In order to explain the measurement results, we consider a
number of parametric statistical models – say, MA;MB; . . . – where
each model is parameterized by the measurand h and, possibly, a
set of nuisance parameters r. We assume that the models are

mutually exclusive and complete, that is, _W
nMn ¼ True. Given the

measurement results x ¼ ½x1; x2; x3�T and the data likelihood
Lðxjh;r;MÞ, one proceeds by assigning a prior probability distribu-
tion pðh;rjMÞ to the model parameters and a prior probability
PðMÞ to each model. Next, by using the product rule of the
probabilities, the joint distribution of the data, parameters, and
models is

Pðx;h;r;MÞ ¼ Lðxjh;r;MÞpðh;rjMÞPðMÞ: ð1Þ
According this hierarchical model, firstly, M is sampled from PðMÞ;
then, the model parameters h and r are sampled from pðh;rjMÞ;
eventually, the data x are sampled from Lðxjh;r;MÞ.

Through conditioning and marginalization, Pðx;h;r;MÞ can be
used to obtain the post-data distributions of interest. By condition-
ing (1) on x and M, one gets the post-data probability distribution
of the parameters given the model and data,

Pðh;rjx;MÞ ¼ Lðxjh;r;MÞpðh;rjMÞ
ZðxjMÞ ; ð2Þ

where the normalizing factor

ZðxjMÞ ¼
Z þ1

�1
dh

Z
R
Lðxjh;r;MÞpðh;rjMÞ dr ð3Þ

Table 1
Measured values of the Planck constant; f is the fraction of the systematic
contribution to the uncertainty budget.

Lab Year Reference Label 1034h (J s) f

IACa 2011 [6,7] – 6.62606991(20)
IACa 2015 [7] – 6.62607016(13)
IACb 2015 [19] 1 6.62607009(12) 0.16
NIST 2015 [8] 2 6.62606936(37) 0.05
NRC 2014 [9,10,7] 3 6.62607011(12) 0.17

This paper – 6.626070073(94)

IAC – International Avogadro Coordination.
NIST – National Institute of Standards and Technology (USA).
NRC – National Research Council (Canada).
a These values’ correlation is 17% [19].
b Average of the 2011 and 2015 IAC’s correlated-values.
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Fig. 1. Measured values of the Planck constant; h0 ¼ 6:62606957� 10�34 J s is the
value recommended by the Committee on Data for Science and Technology.
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