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a b s t r a c t

In order to improve the sensitivity and scanning speed of the dynamic AFM, a surface scanning method
using higher-order resonant cantilever is adopted and investigated based on the higher-order resonance
characteristics of the silicon cantilever, and the theoretical analysis and experimental verification on the
higher-order resonance characteristics of the corresponding dynamic AFM cantilever are given. In this
method, the cantilever is excited to oscillate near to its higher-order resonant frequency which is several
times higher than that of the fundamental mode. Then the characteristic changes a lot compared with the
first-order resonant cantilever. Because of the changes of the quality factor, amplitude and the mode
shape of the cantilever, the higher-order resonant AFM gets higher sensitivity and scanning speed.
Based on the home-built tapping-mode AFM experiment system, the resolution and the response time
of the first and second order resonance measured by experiment are respectively: 0.83 nm, 0.42 nm;
1265 ls, 573 ls. The higher-order resonance cantilever has higher sensitivity and the dynamic measure-
ment performance of the cantilever is significantly improved from the experimental results. This can be a
useful method to develop AFMwith high speed and high sensitivity. Besides above, the surface profile of a
grating sample and its three-dimensional topography are obtained by the higher-order resonant mode
AFM.

� 2016 Elsevier Ltd. All rights reserved.

0. Introduction

Amicro silicon cantilever is used in the atomic force microscope
(AFM) to sense the atomic force between the tip on the cantilever
and atoms on the sample surface, and then to realize surface scan-
ning by the detected force signals. AFM is one of the instruments
with highest spatial resolution by now. It has a sub-nanometer
or even higher spatial resolution, which has been widely used in
various field [1–4], such as nano-measurement, nano-
manipulation, nano-machining and nano-etching [5–8].

The AFM is divided into two categories according to the opera-
tion mode of the cantilever: static mode AFM and dynamic mode
AFM [9]. Nowadays, many versions of dynamic AFM have been
proposed and developed [10–12]. All of these versions rely on
the cantilever’s dynamic characteristic that the resonant parame-
ters (amplitude or frequency/phase) of the cantilever are sensitive
to the atomic interactions to make the measurement. Compared
with the static mode AFM, the dynamic mode AFM has become
the main working mode of the AFM because of its small lateral

force, fast scanning speed, strong anti-interference ability and
other advantages. In fact, the cantilever used in AFM has many res-
onant modes. The minimum detectable force gradient and dynamic
response characteristics of these AFMs are restricted by the geo-
metric parameters of the cantilever itself and cannot be further
improved.

Currently, efforts are still done to make the dynamic AFM more
sensitive and more repaid. It is believed that increasing resonant
frequency is good to lower the minimum detectable force gradient
and improve the scanning speed of the cantilever in dynamic AFM
[13]. In order to obtain a higher operating frequency, fabrication of
nanometric-scale cantilevers of small mass has been already
reported [14]. Due to the small size of the cantilever, this kind of
cantilever which requires more complicated detection systems,
should be prepared specially and is difficult to be commercialized.
Another alternative is to use conventional AFM silicon cantilevers
vibrating at higher-order resonant modes. In earlier years, Rabe
and Minne had done some research on the higher-order resonant
mode AFM, and gave detailed analysis of cantilever vibration
mechanisms [15,16]. Girard P concluded that the stabilization time
of the second resonant mode cantilever is smaller than that of the
first resonant mode cantilever in vacuum and ambient conditions
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[17]. Recently, the research on the higher-order resonance has
gone further with some new theories applied to the vibrating
model analysis of cantilever [18], and multifrequency AFM [19–
21] and subsurface AFM emerged [22,23].

Since the commercial silicon cantilever has many resonant
modes and the cantilever in higher-order resonant mode is more
sensitive to the micro external force, a scanning method based
on the higher-order resonance mode of the cantilever is proposed.
The higher-order resonant characteristics of the silicon cantilever
will be analyzed and validated both theoretically and experimen-
tally, and so does the feasibility and superiority of the profile mea-
suring by using this method.

1. The flexural vibration model of the cantilever

In dynamic AFM here, the cantilever is assumed to be a uniform,
homogenous beam with constant, rectangular cross section. One
end of the cantilever is fixed and the other is hung up for free
vibrating, and a tip with a small radius (the mass of the tip is
assumed to be zero) is attached to the free end. The flexural vibra-
tion schematic diagram of the resonant cantilever is shown in
Fig. 1. Assuming that the deflection of any arbitrary point in the
cantilever relative to its equilibrium position is defined by y(x, t),
x is the horizontal distance between the point observed and fixed
end of the cantilever, t is the time, the Young modulus, the inertia
moment of the cantilever are defined by E and I respectively, EI is
uniform over the length of the cantilever. L is the length of the can-
tilever. When the dynamic AFM’s cantilever vibrates in atmosphere
environment, the air damping exists inevitably and must be con-
sidered. Damping is modeled by parameter c which describes the
additional damping coefficient caused by air when the cantilever
vibrates and m is the mass density of the material. f(x, t) is the
interaction force and it is the tip-sample interaction force at the
point x = L. Then the equation of motion for transversal cantilever
vibrations is:
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The transformation rule is yðx; tÞ ¼ P1
i¼1/iðxÞYiðtÞ. Here, /i(t)

and Yi(t) are defined as the eigenfunction and the corresponding
generalized coordinates of the i-th order resonant cantilever. After
been integrated in the range [0–L] and been applied the orthogonal
properties of the vibration mode, Eq. (1) can be transformed into a
set of decoupled ordinary differential equations in generalized
coordinates:
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where the apostrophes denote the corresponding derivatives with
respect to time o/ot. In Eq. (2), the generalized mass of the i-th order

resonant cantilever is Mi ¼
R L
0 mðxÞu2

i ðxÞdx, the generalized force of

the i-th order resonant cantilever is FiðtÞ ¼
R L
0 f ðx; tÞuiðxÞdx. Yi(t) is

defined as the corresponding generalized coordinates. xi and ci is
the resonant frequency and the damping ratio of the i-th order res-
onant cantilever. The form of formula (2) is same as that of standard
single-degree-freedom systems, so the frequency response charac-
teristics of high-order resonant cantilever can be solved as the form
of Lorentzian curve [24]:
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A0i, Qi, xi is defined as the vibration amplitude, quality factor and
resonant angular frequency of the i-th order resonant respectively.
Fig. 2 shows the curve of the frequency response characteristic of
the resonant cantilever.

The change of the tip-sample interaction forces drives shift of
the vibration amplitude and the resonant angular frequency of
cantilever. In this paper, the detection of changes in the tip-
sample interaction forces was achieved by detecting the deforma-
tion in the vibration amplitude of the cantilever. Clearly, in order to
get the biggest change in cantilever vibration for a given change in
resonant angular frequency, one would work on the steepest por-
tion of the A vs x. This is not at the peak point but occurs at
xmi � xið1� 1=

ffiffiffi
8

p
QiÞ. At this point on the curve, the maximum

slope of the A vs x given by
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Two main factors that affect the amplitude deformation of res-
onant cantilever are vibration amplitude and quality factor of the
cantilever. The experimental results show that the Q of the second
order is much higher than the first order under the same experi-
mental conditions. These are favorable factors for improving the
detection sensitivity.

In a dynamic AFM system in which the vibrating amplitude of
the cantilever is detected by optical lever method, the deflection
angle of the cantilever can produce a corresponding optical power
change Dp(x, t) on position sensitive detector (PSD) [25] as

Dpðx; tÞ ¼
ffiffiffiffiffiffiffi
2p

p pid0

k
hðx; tÞ ð5Þ

where pi defines the incident optical power, k is the wavelength of
laser and d0 defines the beam diameter projected on the cantilever.
The power change Dp(x, t) on PSD is proportional to the deflection
angle h. The deflection angle in the free end of the first, second, and
third order resonant cantilevers are h1, h2, h3 respectively. It can be
seen from Fig. 3 that the deflection angle in the free end of the

Fig. 1. Schematic view of a rectangular cantilever at the higher-order resonant
frequency interacting with sample. Fig. 2. Curve of amplitude-frequency characteristic.
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