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a b s t r a c t

When using measurement data for monitoring there is often a desire for steady-state analysis. On-line
condition monitoring and fault detection systems are typical applications where the traditional way of
treating transient data is to remove it using methods that require tuning using thresholds. This paper sug-
gests an alternative approach where the uncertainty estimate in a particular variable is increased in
response to the presence of transients and through propagation, varies the uncertainty in the result
accordingly. The formulation of the approach is described and applied to two examples from building
HVAC systems. The approach is demonstrated to be a pragmatic tool that can be used to increase the
robustness of calculations from time series data.
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1. Introduction

The work described in this paper developed out of the applica-
tion of condition monitoring and fault detection to heating ventila-
tion and air conditioning (HVAC) systems in buildings. This has
been the focus of research over the last 15–20 years, the aim of
which is to help to manage complex systems in some automated
sense using data [4,7,16,9,15,11].

The decreasing cost of measurement is increasing the use of
smart metering and home energy monitoring systems, where
information can be feedback to home owners and also to third
party service providers [2]. Additionally, the complexity of building
systems needed to cope with on-site generation and energy distri-
bution is all buildings will increase the management of systems
[13,14]. The developments in the built environment are further
complicated because it is interconnected through the energy gen-
eration and supply systems and so building performance will
become increasingly interdependent. Management of these sys-
tems will require greater levels of robust automated supervision
and since much of the time series analysis in the built environment
is based on steady-state calculation methods, having robust means
to handle the transient components are important.

Monitoring applications in buildings have fundamental issues
of robustness due to unmeasured and typically unidentifiable

disturbances, often by the interaction of people. These distur-
bances combined with the response of the control systems to diur-
nal variations in ambient conditions result in measurements that
will always be transient to some extent and hence ‘steady-state
detection’ methods have been developed to filter out transient data
[3,6]. The algorithms often require threshold selection and can
prone to mis-classifying steady-state. This results in a loss of ‘good’
information and the inclusion of unwanted transient data in the
calculation, which tends to generate spurious results and in the
case of fault detection, lead to false alarms, which is undesirable.

Fig. 1 depicts the problem (taken from [1]). A cooling coil is
opened in increments of 10% of the control signal and left to attain
steady-state for about 15 min, the goal of which is to characterise it
over it’s operational range (bottom plot). An algorithm is used to
tune the parameters of a steady-state coil model to the data by
comparing the predictions of temperature off-the coil (PTSUP) with
the measurements (TSUP). The centre plot gives the resultant fit,
but attention is drawn to the upper plot. The dots represent the
data that are deemed to be in steady-state, using a low-pass filter
and gradient threshold method given taken from [10]. The problem
is that many steady-state samples are rejected, so much so that the
model parameter estimates could be biased. Further ‘tuning’ only
leads to either fewer good points, or the introduction of data from
transient region of operation, rather than classifying the data
correctly.
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Rather than determining rejection criteria, this approach retains
all data but scales the uncertainty in the observations according to
the detection of transients, thus alleviating the tricky threshold
selection and retaining all available information in the data. This
uncertainty can then be combined with the other uncertainties
and propagated to the result [8]. The technique would typically
be applied to each variable under observation and it can be applied
in batch format, or recursively for on-line applications. This paper
presents the formulation of the method and gives examples of its
use in practice.

2. Method

The uncertainty in measurements are due to bias in calibration,
indeterminable noise, interference from other effects that cannot
be eliminated or in the approximation to bulk average properties
or quantities. These individual sources are termed elemental
uncertainties and are usually quoted at a 95% confidence interval
and combined in quadrature to yield a 95% confidence level for
the measurement,
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where Ui is the uncertainty in the variable and Ua ! Un are the ele-
mental uncertainties quoted at the 95% level. Once the variable
uncertainties are established, they can be propagated through a
particular calculation or analysis using the approach described by
Kline and McClintock [8],
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Many calculations yield the best results when the system being
monitored is stable and close to steady-state, i.e. does not vary with
time [7]. Hence, if the data is at or very close to steady-state, then

there is negligible uncertainty due to transients in any subsequent
calculation. If the system has had an input that drives it towards a
new operating condition, then the data will become transient for a
period of time, during which any calculation will yield poorer
results, because the system is not in steady-state but is ‘looking
forward’ to the new state. In this case, the additional uncertainty
in the result of the analysis will be due to the transient nature of
the data and hence if accounted for, will yield robust results.
Eq. (1) can therefore be expanded to become,
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i ¼ U2
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where Us is the uncertainty due to the transients in the data. The
left hand plot in Fig. 2 depicts a system that begins in steady-
state then at some time t1 there is a step input to the system, such
that is drives the variable to a new steady-state, some time later, t2.
The variable might respond as shown by the dashed line. If the aim
is to calculate a steady-state value from the variable at either the
old or new state, then Us ¼ 0 before t1; Us ¼ maximum just after
the step input and then Us ! 0 as time progresses.

In order to detect the change in state, measure it and evaluate it
with respect to the implications on the uncertainty for a calculation,
the variable needs to be sampled. The dot-dashed line in the right
hand plot of Fig. 2 depicts the effects of applyingmean and variance
calculations to a moving window filter applied to the variable.

Two common methods used to recursively generate the mean
and variance in time series data are: a fixed time window approach
which averages consecutive data samples over the length of the
window and hence applies an equal weighting to each sample,
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Fig. 1. Issues with threshold selection and the reliability of detection of steady-state.
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