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a b s t r a c t

The question of determination of displacements in control networks with two or more
measuring epochs is a well-known problem with broad applications to different fields of
science and engineering. The standard procedure, which is computed by means of the
pseudoinverse matrix, however, makes an implicit assumption that may be not convenient
for the network at hand: it distributes the noticed displacement among the majority of the
network points. The present paper develops what it has been named as the maximum
number of stable points hypothesis and builds from the corresponding theoretical
framework an applicable computation procedure. Application to a particular example will
confirm its clear advantages versus the standard procedure for deformation determination
in the cases where a single large deformation may be suspected.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The theory and methods for deformation determination
can be found in disparate areas of science and engineering,
which include structural engineering, geodesy, surveying
engineering, tectonics, geotechnical engineering and
geomorphology, and may make use of observation tech-
niques like Global Navigation Satellite Systems (GNSS) –
e.g. Global Positioning System (GPS) – remote sensing,
photogrammetry, Electronic Distance Measurement
(EDM), angle measuring, levelling, etc. [1–10].

Control networks for deformation determination are
generally classified into absolute and relative networks,
depending whether they have points located outside the
deformable area that can be considered stable (absolute
networks) or all the network points may be affected by
displacements so that only relative movements can be
detected (relative networks) [7]. In the present paper, we

will focus on the latter case, i.e. the case where all points
are potential candidates for suffering a displacement
between a pair of observing epochs.

In a deformation network redundant measurements are
made among the control points for every epoch. Then the
corresponding overdetermined systems of observing
equations are formed and solved by least squares. Finally,
the use of statistical tests over the least squares solution
permits to conclude within the corresponding level of
significance on the possible point displacements. This
well-known theoretical framework will be developed in
the next section. As it will be shown, no unique solution
exists for the problem of determining relative displace-
ments. In fact there are infinitely many solutions in terms
of possible point displacements that are compatible with
the observed values. In order to obtain a solution for the
corresponding rank deficient systems the standard theory
of deformation determination opts then for the pseudoin-
verse solution. As it will be argued, the pseudoinverse solu-
tion is a very sensible choice but it may not be the best
option for all cases. The fact that the particular selected
solution supposes to include an additional assumption
directly affecting the results and what this assumption
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may be is a question often overlooked in deformation
monitoring theory. The explanation of the assumption
implicit in the adoption of the pseudoinverse solution
(balanced distribution of displacements among all points)
along with the proposal of a different assumption and
correspondingly different solution arguably more sensible
for other cases (stability of the majority of pillars and
possible large displacements in very few of them) will be
developed in the next section and later applied to the case
of the open test field located in the Universidad Politécnica
de Valencia campus.

2. Methods

2.1. Standard procedure for deformation determination

Let the system of observation equations for epoch 1 be
written as

A1x1 ¼ l1 þ r1 ð1Þ

where A1 denotes the coefficient matrix, x1 the solution
vector, l1 the vector of independent terms, which includes
the observed values, and r1 the residual vector.

If observations are assumed to follow normal
distributions with variance–covariance matrix R1 then
the residual vector also follows a normal distribution with
zero mean and variance–covariance matrix R1 and the
most likely solution is obtained by the least squares condi-
tion arg minx1

rT
1P1r1 , where P1 = R1

�1, which leads to

ðAT
1P1A1Þx1 ¼ AT

1P1l1 ð2Þ

x1 ¼ ðAT
1P1A1Þ

�1
AT

1P1l1 ð3Þ

and analogously for epoch 2

x2 ¼ ðAT
2P2A2Þ

�1
AT

2P2l2 ð4Þ
The deformation vector is obtained then as

d ¼ x2 � x1 ð5Þ

If the magnitudes observed in both epochs are the same
(and ordered the same in both equation systems) and the
same approximate coordinates are used in both epochs,
Eq. (1) applied to both epochs can be written as

Ax1 ¼ l1 þ r1 ð6Þ
Ax2 ¼ l2 þ r2 ð7Þ

Subtracting Eq. (6) from Eq. (7) it can be written

Ad ¼ lþ r ð8Þ

where d is the deformation vector defined in Eq. (5), l is
vector of differences between observed values in every
epoch and r is the vector of differences between residuals.

Solution of the equation system in Eq. (8), named the
observation differences model, is obviously equivalent to
the separate solution of Eqs. (6) and (7) and subsequent
determination of displacement by Eq. (5), and it will be
preferred here for the sake of conciseness. The least
squares solution verifies

ðAT PAÞd ¼ AT Pl ð9Þ

d ¼ ðAT PAÞ
�1

AT Pl ð10Þ

where P ¼ ðR1 þ R2Þ�1.
Now, as it was mentioned before, in the case of control

networks where no point is free from potential
displacements the corresponding system of equations is
rank deficient. Therefore the matrix inverse in Eq. (10) –
or inverses in Eqs. (3) and (4) if separate adjustments are
preferred – does not exist. The solution is obtained then
by means of generalized inverses, denoted by ð�Þ� , in an
equivalent manner

d ¼ ðAT PAÞ
�

AT Pl ð11Þ

where by definition, given a matrix B 2 Rm�n a generalized
inverse of B is a matrix B� 2 Rn�m that satisfies

BB�B ¼ B ð12Þ

The question now is that there are infinitely many
generalized inverses, leading each of them to a different
solution. There are then infinitely many deformation
solutions that fulfill the least squares minimum condition,
or in other words, there are infinitely many vectors d that
satisfy Eq. (8) with the same residual vector r.

One particular generalized inverse is customarily
selected: the pseudoinverse matrix. For any given matrix
B 2 Rm�n there always exists one and only one matrix –
denoted by B+ – that satisfies the four equations known
as Moore–Penrose conditions [11]

BBþB ¼ B ð13Þ

BþBBþ ¼ Bþ ð14Þ

ðBBþÞT ¼ BBþ ð15Þ

ðBþBÞT ¼ BþB ð16Þ
The pseudoinverse matrix is one of the generalized

inverse matrices and it can be proved that has some possibly
desirable properties that make it the habitual choice [12,13]:
it is the generalized inverse of least determinant and least
trace, and provides the solution of minimum L2-norm among
the infinitely many solutions of the system of equations.

The crucial point here is to acknowledge the assump-
tion implicit in the customary selection of the pseudoin-
verse for the generalized inverse matrix in Eq. (11): the
displacement vector d with least L2-norm is being chosen
as the best explicative solution to our rank deficient prob-
lem. In other words, in a control network where no point
can be assured to remain stable we opt for the solution
where Rdi

2 is minimum, i.e. we prefer to explain the
observed differences between epochs in the measured
magnitudes as small displacements of all points, and this
constitutes a working assumption incapable of being
demonstrated or refuted (additional to those that led to
select the least squares estimator as the best estimator).

One may argue that this hypothesis may appear to be
reasonable for most cases. There are some occasions,
however, where this assumption may go against the
expected behavior, and therefore the customary use of
the pseudoinverse solution must clearly be avoided. This
is the case, for instance, of highly stable networks, such
as the test field facility that we will see in Section 3, where
clearly no displacements of the order of the observation
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