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a b s t r a c t

This paper presents a numerical method for the coverage interval determination of the output variable
while knowing the probability density functions of two non-dependent input variables. The coverage
interval is derived from distribution function. In order to obtain the probability density function of the
output variable, which is of mixed distribution type, the numerical combined method is applied, con-
sisted of the Monte Carlo method and the modified least-squares method. The proposed method is
applied for the symmetric distributions in the conducted emission measurements. The validation of
the combined method showed its satisfactory level of accuracy.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The Guide to the Expression of Uncertainty in Measurement –
GUM Supplement 1 [1] sets a current standard for expressing the
measurement uncertainty. According to this document, a measure
of uncertainty is the coverage interval. The coverage interval is an
interval that contains the value of a quantity with a stated proba-
bility, on the basis of available information [1,2]. In addition, the
coverage interval is connected with the probability distribution
of the output variable (measurand). The term ‘coverage interval’
[1] should not be mixed with the term ‘confidence interval’ [3].
This latter term is used in statistics. Several approaches can be
used to determine a coverage interval for the measurand: (1) prin-
ciple of maximum entropy, (2) Bayesian treatment and (3) propa-
gation of distributions [4]. The principle of maximum entropy is
based on a unique selection of probability density function (PDF)
for the measurand from all PDFs that have specified properties
(expectation, standard deviation and intervals) on condition that
the PDF is non-zero. Bayesian treatment is based on a probabilistic
model for the measurement which is expressed as a function of
probability. It is used to update prior information about the mea-
surand (a prior PDF, a posterior PDF) [4]. Propagation of distribu-
tions is based on a model function which is used to relate the
measurand to model input quantities [4]. This method may be

applied in few ways: by analytical methods, uncertainty propaga-
tion, numerical methods [1]. Many publications treat each of these
methods [4–10].

The coverage interval can be derived from the cumulative dis-
tribution function (CDF). Namely, the coverage interval is calcu-
lated by the propagation of probability distributions through a
measurement model [10,11]. The fundamental purpose of the
numerical method is to obtain a coverage interval of the model
output quantity, which is dependant on two input variables [12].
In the case of a linear dependence between input and output vari-
ables, the probability density function (PDF) of output variable
(measurand) can be derived by using a Monte Carlo method
(MCM) and a modified least-squares method, i.e. combined
method [11]. MCM and the modified least-squares method appli-
cation give a mixed distribution, which is, in fact, a numerical
approximation of the measurand PDF. Since the cumulative distri-
bution function represents the integral of its corresponding PDF
[1], the combined method produces the numerical approximation
of the measurand CDF. According to this, combined, method the
measurand probability density function behaves symmetrically.
This sort of problems are met in the conducted emission measure-
ments [12,13].

The aim of this paper is to present a numerical method for the
coverage interval determination of the output variable, while
knowing the probability density functions of two non-dependent
input variables.
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2. Evaluation of the cumulative distribution function

CDFs are calculated by the propagation of probability distribu-
tions by using the measurement model. The method used in this
paper consists of following steps [11]: (1) Evaluation of the mea-
surand PDF; (2) estimation of PDF parameters; (3) determination
of the measurand CDF; and (4) the measurand coverage interval
determination.

The evaluation of measurand PDF is performed by using a MCM
and a modified least-squares method (combined method) [11]. The
combined method demands numerical estimation of measurand
probability density function (point estimates parameters of the
mixed distribution) [11,12]. The procedure for obtaining these
parameters is described in detail [11].

The measurand cumulative distribution function estimation is
based on the set of values [11]. Therefore, the numerical method
is applied in three different cases including two non-dependent
input variables. The first case considers two input variables which
follow normal distributions. The second case considers two input
variables of which one follows normal distribution and the other
follows rectangular distribution. The third case considers two input
variables of which one follows normal distribution and the other
follows triangular distribution [11].

The simulation was performed in the Visual Basic 6.0. The data
for simulations were as follows: (a) the events number N = 106, (b)
the data number n = 5000, (c) risk conformity a = 0.025, and (d) the
mixed coefficient e = 0.5. In addition, the theoretical curve (GUM
method), estimated curve (combined method) and empirical curve
were compared.

2.1. The mixed normal–normal CDF

CDF of the output variable which is of mixed normal–normal
type, F(x), and the corresponding CDFs for the input variables,
F1(x) and F2(x), are given by the Eqs. (1)–(3), respectively [11]:
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where m1 and m2 are mean values of the first and the second nor-
mal distribution, respectively, s1 and s2 are standard deviations of
the first and the second normal distribution, respectively, e – mixed
coefficient of these distributions, e 2 ½0;1�.

In Fig. 1, which shows theoretical curve, empirical curve and
estimated curve obtained by Eqs. (1)–(3), it can be seen that all
three curves are in a good agreement.

2.2. The mixed normal–rectangular CDF

CDF of output variable which is of mixed normal–rectangular
type, F(x), is given by the Eq. (1), and the corresponding CDFs of
the input variables, F1(x) and F2(x), are given by the Eqs. (4) and
(5), respectively:
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wherem and s are mean value and standard deviation of the normal
distribution, while a and b are lower and upper limits of a rectangu-
lar distribution.

Fig. 2 shows the simulation results obtained for the mixed nor-
mal–rectangular CDF. In this case, it can be seen that the theoret-
ical curve and the empirical curve are in a good agreement,
while the estimated curve has some discrepancy from the theoret-
ical curve when approaching limits. This difference is the conse-
quence of the stochastic nature of the Monte Carlo method and
the modified least-squares method, i.e. the result of evaluation of
parameters of the mixed distribution (whose values are pseudo-
random) and the number N of iterations (the events number).

2.3. The mixed normal–triangular CDF

As in the previous case, the mixed normal–triangular CDF, F(x),
is given by Eq. (1) while the CDFs of the input variables, F1(x) and
F2(x), are given by the Eqs. (6) and (7), respectively:
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wherem and s are mean value and standard deviation of the normal
distribution, a and b are lower and upper limits of a triangular dis-
tribution and c is mode of the triangular distribution.

Fig. 3 shows the simulation result obtained for the mixed nor-
mal–triangular CDF. As can be seen, the theoretical curve, esti-
mated curve and the empirical curve are in a good agreement, in
the right half of the curve. In the left half of the curve, the esti-
mated curve has some discrepancy from the theoretical curve. This
difference is the consequence of the stochastic nature of the Monte
Carlo method and the modified least-squares method, as stated in
Section 2.2.

3. Determination of the coverage interval

The definition of the coverage interval is given in two forms
[1,5]. The first statement refers to the probabilistically symmetric
coverage interval or statistical coverage interval: ‘‘coverage inter-
val for a quantity such that the probability that the quantity is less
than the smallest value in the interval is equal to the probability
that the quantity is greater than the largest value in the interval”
[1,5,14]. Consequently, determination of the ‘probabilistically sym-
metric coverage interval’ assumes that values are symmetrically
distributed in respect to their midpoint. The other statement
relates to the shortest coverage interval: ‘‘coverage interval for a
quantity with the shortest length among all coverage intervals
for that quantity having the same coverage probability” [1,5,14].
Determination of ‘the shortest coverage interval’ assumes that
the shortest interval, in the set of all coverage intervals with the
same probability, has been found.

Propagation of distributions is one of the approaches for deter-
mining the interval coverage. In addition, there are several ways
(analytical methods, uncertainty propagation, and numerical
methods) that are used. The analytical method may be used when
model of the measurand is a linear or a linearized. This method
depends on an approximation of the convolution of standard distri-
butions (e.g. Student’s, normal, rectangular, triangular or trape-
zoidal) for input variables [5–7]. The uncertainty propagation is
based on a construction of a linear approximation to the model
function. In addition, a coverage interval based on characterizing
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