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a b s t r a c t

Rolling element bearings are one of the fundamental and most important elements in machines and their
failures are among the foremost frequent causes of machine breakdown. Vibration and acoustic signals
from faulty bearings are typically a mixture of fault-induced periodic impulses and other components.
Traditional time-domain features like root-mean-square (RMS) and kurtosis fail to utilize the periodicity
property of the impulses, which makes them invalid in some circumstance. Impulses occurring at specific
period is the key characteristic of corresponding defect. In the paper, a novel feature named envelope
harmonic-to-noise ratio (EHNR) is proposed for periodic impulses detection. The properties of EHNR
are illustrated by simulations and bearing full life cycle degradation data. Moreover, an EHNR-based
method is proposed to locate periodic impulses in frequency domain. A simulation and a locomotive
bearing test rig are used to verify the proposed method. The proposed method has better performances
than kurtosis-based method.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Bearings are of paramount importance to almost all kinds of
rotating machinery and are the most commonly used machine ele-
ments in industrial applications. An unexpected bearing failure
may cause the machinery breakdown, along with significant eco-
nomic losses. Early detection of the bearing failure is essential to
prevent the machines from fatal breakdown. Researches on the
causes and analysis of bearing failures have been extensively con-
ducted for four decades [1]. Various techniques are developed for
detection of bearing defects, and they may be broadly classified
as vibration and acoustic analysis, temperature measurements
and wear debris analysis. Among them, vibration and acoustic
analysis are the most widely used techniques due to their intrinsic
advantage of revealing bearing failure [2].

Time-domain features like variance, skewness and kurtosis
always serve as the basis of many advanced techniques for bearing
diagnostics including spectral-kurtosis [3], minimum entropy
deconvolution (MED) [4], artificial neural network (ANN) [5], etc.
Different feature-based techniques in fact may derive very differ-
ent results, thus it is necessary to recognize the deficiency of cur-
rent classic time-domain features. The presence of a bearing

defect would cause an increase in the vibration and noise level.
Overall root-mean-square (RMS) value of the measured signal is
applied in industry to measure vibration intensity and indicate
the incipient defect [6]. However, RMS value has limited applica-
tions because it is not sensitive to defect at its early stage when
the defect contributes little energy. And it only reflects the ampli-
tude of the original signal and fail to show any detailed wave shape
information concerning the defect. Vibration impulses is another
significant signature of bearing defect. Kurtosis value was first uti-
lized by Dyer and Stewart [7] for bearing diagnostics, and it sug-
gested that a value greater than 3 is an early symptom of bearing
failure. Spectral kurtosis (SK) proposed by Dwyer [8] is a developed
method to locate the impulsive components in frequency domain.
Antoni [3,9,10] developed the theory of SK and put forward the
kurtogram for optimal frequency band selection to improve
signal-to-noise ratio (SNR) of measured signal. Spectral kurtosis
has been widely applied to rotating machine diagnostics [11,12].
However, the kurtosis-based techniques may derive invalid results
in the presence of relatively strong non-Gaussian noise containing
high peaks or for a relatively high repetition rate of fault impulses
[13]. Randall and Antoni [14] also mentioned that the kurtogram is
very sensitive to large random impulses and the final envelope
spectrum may not reveal fault impulses, even though the SK is
high. In conclusion, RMS is a reliable parameter but not capable
of indicating early fault and it normally requires data collected in
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healthy condition as benchmark. Kurtosis-based techniques focus
on finding the most significant impulses in the measured signal
but not robust enough. Moreover, both classic features fail to uti-
lize the periodicity information of the fault-induced impulses.

The harmonic-to-noise ratio (HNR) is suitable to character the
periodicity of bioacoustics because the signal is mainly harmonics
and noise. And it has been extensively used in human phonetics as
a diagnostic tool for the quantification of vocal changes [15,16].
Owren and Linker [17] suggest the HNR as a useful tool in animal
bioacoustics, and Riede et al. [18] applied the HNR to dog barks to
differentiate healthy dogs from disordered dogs. The HNR is also
utilized in speech coding, speech recognition and speaker recogni-
tion [19,20]. But the vibration/acoustic signals of bearings differ
from bioacoustics a lot because the fault-induced periodic
impulses are modulated at resonance frequencies. Thus the HNR
does not apply to bearing diagnostics directly. Vibration and acous-
tic signals of faulty bearing are typically a mixture of fault-induced
periodic impulses and other components. In the paper, the envel-
ope harmonic-to-noise ratio (EHNR) is proposed to character the
periodicity of the fault-induced impulses. Simulations and full-
life bearing data are used to illustrate the property of the EHNR,
and it suggests that the EHNR might be useful as a novel feature
for indicating the fault-induced periodic impulses. Moreover, an
EHNR-based method is also proposed to locate the periodic
impulses in frequency domain. Its efficiency is verified by a simu-
lation and a locomotive bearing test rig. The results of kurtosis-
based method are given for comparison, and the proposed method
shows better performance.

The remaining part of this paper is organized as follows. The
EHNR algorithm calculation for bearing diagnostics is given in
Section 2. In Section 3, the properties of the EHNR are illustrated
by simulation, and the EHNR-based method is proposed in this

section. The performances of the EHNR are further discussed using
bearing a full life cycle degradation data in Section 4 case 1. In
Section 4 case 2, the proposed EHNR-based method is validated
by a locomotive bearing test rig. Finally, conclusion is drawn in
Section 5.

2. EHNR calculation

Periodic impulses spaced at specific period corresponding to the
bearing characteristic frequency (BCF) is the bearing fault signa-
ture, as shown in Fig. 1(a). Fault impact would excite multiple res-
onant frequencies as presented in Fig. 1(c). The higher harmonics
smear over one another with even a small amount of slippage of
rolling element. Envelope analysis by Hilbert transform can help
to simplify the signal significantly by shifting the frequency analy-
sis from the very high range of resonant frequencies to the much
lower range of the fault frequencies [14]. The envelope and the
envelope spectrum of original signal are given in Fig. 1
(b) and (d). Fig. 1(d) shows clear harmonics at BCF even with slip-
page of rolling element, and the envelope signal can be treated as a
sum of two parts: harmonics and noise components. It suggests
that calculating the envelope harmonic-to-noise ratio (EHNR)
rather the HNR of original signal can be an effective way for peri-
odic impulses detection.

The EHNR algorithm can be calculated as follows.

(1) Obtain the envelope signal Envx(t) by Hilbert transform of
the measured signal x(t) and remove the zero-frequency
component,

x̂ðtÞ ¼ HfxðtÞg ¼ 1
p

Z 1

�1

xðsÞ
t � s

ds ð1Þ

Env 0
xðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ x̂2ðtÞ

q
ð2Þ

EnvxðtÞ ¼ Env 0
xðtÞ �meanðEnv 0

xðtÞÞ; ð3Þ
where x̂ðtÞ is the version of the original signal x(t) with a 90� phase
shift, Env0x(t) is the direct envelope signal and Envx(t) is the envel-
ope signal after removing the DC component from Env0x(t).

(2) Compute the autocorrelation of Envx(t),

rEnvx ðsÞ ¼
Z

EnvxðtÞEnvxðt þ sÞdt; ð4Þ

where s is the time lag. By the definition of autocorrelation, the best
candidate for the vibration/acoustic pitch period of the signal can be
found from the position of the maximum of the autocorrelation
function of the signal, while the periodicity of the signal can be
found from the relative height of this maximum.
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Fig. 1. (a) Bearing fault-induced periodic impulses; (b) envelope of signal (a); (c) frequency spectrum of signal (a); (d) envelope spectrum of signal (a) i.e., the frequency
spectrum of envelope (b) after removing zero-frequency component.

Fig. 2. Autocorrelation spectrum of signal Envx(t).
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