
Data correlation analysis for optimal sensor placement using a bond
energy algorithm

Wei Lu a,⇑, Runfa Wen a, Jun Teng a,b, Xiaoling Li a, Chao Li a

aDepartment of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen Graduate School, Xili University Town HIT Campus, Shenzhen 518055, China
bCollege of Civil Engineering, Fujian University of Technology, No. 3 Xueyuan Road University Town, Fuzhou 350108, China

a r t i c l e i n f o

Article history:
Received 29 October 2015
Received in revised form 18 May 2016
Accepted 25 May 2016
Available online 26 May 2016

Keywords:
Structural health monitoring
Optimal sensor placement
Data correlation
Bond energy algorithm

a b s t r a c t

Optimal sensor placement is one of the crucial and fundamental factors for constructing a cost-effective
structural health monitoring system and is related to the effective evaluation of the state of the structure.
Structural responses are correlated to some extent, as the structural behavior is continuous. Based on the
above two considerations, the question arises of how to obtain the maximum amount of information for
understanding the structure using measurements from limited sensors and not be limited to direct mon-
itoring at the placements where the limited sensors are located. Data correlation analysis for optimal sen-
sor placement is proposed using a bond energy algorithm, in which the objectives, such as structural
response evaluation covering the maximum structural responses using measurements from sensors
located at the optimal placements, are taken into account. The data correlation analysis is conducted
for the structural responses, and the correlation matrix is established. Furthermore, the optimal sensor
placements and the correlation of the responses at element locations can be determined using the bond
energy algorithm. A Schwedler single-layer spherical lattice dome-like structure, which is a common
large space steel structure, is used to simulate the structural responses and verify the effectiveness of
the proposed method by discussion of different scenarios of parameter selection.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

With the development of structural health monitoring technol-
ogy, more attention has been given to its application in large-span
space structures that have numerous nodes and components.
Considering the limitations of economic and site conditions, it is
impossible to place sensors at every position [1–3]. Therefore, it
has become an important research question to optimize the finite
number of sensors to obtain as much information as possible
regarding the structure in the field of structural health monitoring.
Furthermore, such prophase work is indispensable to implement-
ing a structural health monitoring system [4].

At present, there are many ways to obtain optimal sensor place-
ments. Kammer [5] proposed an effective independence method of
optimal sensor placements for large space structures. In this
method, the position was sorted based on the contribution of linear
independence of the target mode components; by deleting points
with little contribution to the independence of the target modes,
the limited sensors can be chosen to collect as much information
as possible for obtaining modal information. The modal strain

energy method was proposed to analyze the structure, in which
the larger modal strain energy in terms of degrees of freedom coin-
cides with the location of the larger structural response, and the
sensors placed in these positions therefore benefit structural
modal identification [6]. The spline function interpolation method
is another solution to obtain the optimal sensor placements, in
which the structural responses of the other points and limited
measure node modal responses are first obtained. Then, the mini-
mum interpolation error is used to determine the optimal sensor
placements for a simple beam [7]. To obtain the modal dynamic
information used in fingerprint update identification and model
update for the structural health monitoring of bridges, Cui and
Yuan [8] proposed a methodology of optimal sensor placements
with the purpose of selecting key measuring points from a complex
degree of freedom structural model. Guyan [9] proposed the model
reduction method to determine optimal sensor placements for
reflecting the low-order vibration modes of the structure.
Master-slave constraint equations for degrees of freedom were
substituted into the kinetic energy or strain energy expression of
the system to reduce the degrees of freedom. The structural
degrees of freedom can be divided into primary and secondary
degrees of freedom, and the shrinkage stiffness or mass matrix
can be formed while maintaining the primary degrees of freedom.
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Lu and Teng [10] proposed a method for optimal sensor placement
using a distance measure matrix and synthesized support degree,
in which the number and placement of accelerometers were deter-
mined by the values of the synthesized support degree. The afore-
mentioned optimal sensor placement methods are mostly used for
modal identification, the optimal sensor placement methods were
also additional studied with the aim to the structural response
reconstruction and monitoring [11], such like the optimal place-
ment of sensors for sub-surface fatigue crack monitoring [12],
the sensor positioning and choice of the number of sensors were
optimized in terms of the reconstruction on the temperature field
considering the error propagation in case of uncertain measure-
ments [13], the optimal sensor placement for enhancing sensitivity
to change in stiffness was proposed to find the optimal configura-
tion of sensors that would best predict structural damage [14], the
optimal sensor placement methodology was proposed so as to bet-
ter estimate the vibration response of the entire structure [15] and
so on. The stress distribution and displacement development of the
structure are important monitoring parameters for structural
safety estimation and should be considered in the optimal sensor
placement method for such strain or displacement sensors. For
such consideration, the measurements of strain or displacement
sensors can not only display the structural responses at the place-
ment where the sensors are located but also reflect the structural
responses at placements correlated with sensor locations. An addi-
tional objective of optimal sensor placement for strain or displace-
ment sensors is to avoid redundancy among the measurements
from different measuring points. Correlation is a parameter that
can represent the redundancy among the measurements; higher
(lower) correlations can lead to greater (less) redundancy, i.e.,
more (less) overlapping information was measured. Therefore,
selecting measuring points with little association with each other
can make it possible to gain more independent measuring informa-
tion that is more comprehensive and reliable.

To reduce the redundancy information of measurement sensor
systems and maximize the function of limited sensors, as well as
to evaluate the structural responses with the measurements from
limited sensors, this paper presents a method of optimal sensor
placement based on correlation. First, a correlation matrix of
potential sensor placements is established and processed into a
binary matrix. Second, the potential sensor placements are prelim-
inarily optimized and classified using the bond energy algorithm
(BEA), in which the potential sensor placements in the same cate-
gory are strongly correlated and the potential sensor placements in
different categories are weakly correlated. Then, the final position
and number of measuring points can be determined according to
the proposed principle of optimal sensor placement. The optimal
sensor placement in the deformation monitoring of a single-layer
Schwedler reticulated dome-like steel structure is conducted to
verify the effectiveness of the proposed method by analyzing the
information entropy of the optimized results.

2. Data correlation analysis of structural responses

2.1. The establishment of the correlation matrix

The correlation degree is usually expressed as c, which
describes the association of structure response information
between two positions and reflects their correlation level. It is a
non-dimensional parameter that ranges from �1.0 to 1.0 (includ-
ing �1.0 and 1.0). The closer the absolute correlation value is to
1, the more strongly the structural responses from two positions
are correlated, whereas the closer the absolute correlation value
is to 0, the more weakly the structural responses from the two
positions are correlated.

It is assumed that X e Rm�n represents the response information
matrix of n positions in m load cases, i.e.,

X ¼ ½ x1 x2 � � � xn � ¼

x11 x12 � � � x1n
x21 x22 � � � x2n

..

. ..
. ..

. ..
.

xm1 xm2 � � � xmn

2
66664

3
77775

ð1Þ

For two arbitrary positions at i and j, the response information
is xi and xj, and the sample variance and covariance computation
formulas are as follows:

VarðxiÞ ¼ 1
m� 1

Xm

k¼1

ðxki � xiÞ2 ¼ rii ð2Þ

VarðxjÞ ¼ 1
m� 1

Xm

k¼1

ðxkj � xjÞ2 ¼ rjj ð3Þ

Covðxi; xjÞ ¼ 1
m� 1

Xm

k¼1

ðxki � xiÞðxkj � xjÞ ¼ rij ð4Þ

where xi ¼ 1
n

Pn
k¼1xki and xj ¼ 1

n

Pn
k¼1xkj are the mean values of xi and

xj, respectively, and the correlation degree formula of structural
response information at positions i and j is:

cij ¼ Corrðxi; xjÞ ¼ Covðxi; xjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðxiÞ � VarðxjÞ

p ¼ rijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffirii � rjj
p ð5Þ

The correlation matrix R can be expressed as

R ¼ ½cij�n�n
¼

c11 c12 � � � c1n
c21 c22 � � � c2n
..
. ..

. ..
. ..

.

cn1 cn2 � � � cnn

2
66664

3
77775

ð6Þ

2.2. Binary processing to correlation matrix

The correlation threshold is expressed as g; when the absolute
value of the correlation is no smaller than the correlation threshold,
i.e., jrijj P g, the element in the ith row and jth column of the corre-
lation matrix is replaced by 1, and when the absolute value of cor-
relation is smaller than g, i.e., |rij| < g, the element in the ith row and
jth column of the correlation matrix is replaced by 0. With this bin-
ary processing of the correlation matrix, the equivalent correlation
matrix D, whose elements are all one or zero, can be expressed as

D ¼ ½dij�n�n ¼

d11 d12 � � � d1n

d21 d22 � � � d2n

..

. ..
. ..

. ..
.

dn1 dn2 � � � dnn

2
66664

3
77775

ð7Þ

3. Bond energy algorithm for equivalent correlation matrix

3.1. Matrix transformation using the bond energy algorithm

The bond energy algorithm (BEA) [16] is a type of clustering
approach, which can transform the matrix into submatrices with
characteristics of block division by calculating the bond energy of
elements into rows and columns. The BEA is used to calculate the
bond energy of the rows and columns in the equivalent correlation
matrix. The row and column transformation is taken subsequently
based on the value of the bond energy to enable an equivalent cor-
relationmatrix with the characteristics of block division. The equiv-
alent correlation matrix can be represented with several diagonal

510 W. Lu et al. /Measurement 91 (2016) 509–518



Download English Version:

https://daneshyari.com/en/article/729696

Download Persian Version:

https://daneshyari.com/article/729696

Daneshyari.com

https://daneshyari.com/en/article/729696
https://daneshyari.com/article/729696
https://daneshyari.com

