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a b s t r a c t

Engineers find interpreting plots of a measured physical variable more straightforward
than doing a formal statistical analysis. The default choice to display the data behavior is
the histogram. The histogram’s performance has proved to be sufficient. However, histo-
grams have a number of limitations including sensitivity to the binwidth and a non-phys-
ical roughness. Over the past years, statisticians have developed different techniques to
address these problems. These techniques provide a much clearer visualization of the prob-
ability density and a more accurate estimation of the statistical properties of the measured
data. Despite their increasing use in other fields, these techniques are rarely used in the
measurement community. For instance, most measurement instruments provide histo-
grams only. This review article revisits these techniques from an engineer viewpoint to
encourage its use. Different examples that include known and unknown densities result
in practical guidelines that help the measurement engineer to visualize the probability
content.

� 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

Many problems in the scientific and engineering fields
are inherent to variability in real data or measurement
uncertainty. Discovering and understanding the sources
of this randomness can help to make any scientific process
more robust. Hence, describing this randomness with only
fixed numbers or simple plots can sometimes be inappro-
priate and uninformative. Statisticians developed tools to
quantify and visualize this randomness in a probabilistic
manner so that more information on the behavior of the
data can be obtained. Over the past years, advances on
computer science have revolutionized this practice. This
allowed most experimental researchers and engineers
interpreting graphs rather than doing formal statistical
analysis [1,2].

The probability density function characterizes the
behavior of a particular random variable by describing
the values that the variable can take on in a specific inter-
val. Density estimation is the process of building an
approximation f̂ ðxÞ of the unobservable probability density
f(x) just using n observations of X i.e. X1, . . . , Xn, where X is
a continuous random variable [2,3]. A continuous probabil-
ity density function f satisfies [4]

ðf ðxÞP 0;
Z

R
f ðxÞdx ¼ 1; ð1Þ

and so should its density estimate f̂ . A perfect knowledge
of f would allow some statistical properties and applica-
tions to be determined [4–6]. The choice of the estimation
method depends on the engineer’s objective. For instance,
if some specific derivations are required, the statistical
technique should be parametric: a specific density function
(Normal, Exponential, Poisson, Uniform, etc.) should be
assumed. If the type of the underlying density function,
presence of tails or skewness needs to be determined, the
methodology should be nonparametric: no specific density
function is assumed. Parametric methods are known for
being powerful for unimodal distributions [7]. However,
in practice most densities are multimodal and high-dimen-
sional [8].

The histogram is the most used nonparametric density
estimation technique. It appeared in the 17th century as
a tool that grouped and tabulated data into bins which
form a frequency curve and became an accepted statistical

data representation method by the 20th century, see
Table 1. Since then, the histogram has remained as an
important visualization tool [9]. Nowadays, many software
packages and measurement instruments generate histo-
grams to estimate the distribution of repeated measure-
ments. In order to analyze if this technique does a proper
job, we will assess its performance on a known density
function.

An interesting example is the cubic power of a Gaussian
distributed random variable X, which presents a symmetri-
cal and highly-peaked distribution. The true probability
density function of X3 is

f X3 ðxÞ ¼ 1

3jxj2=3 f X jxj
1=3

� �

where fX(x) represents the true density function of the
Gaussian random variable X. Using a data set of size
n = 1000, the true density is computed and shown as a
red1 curve in Fig. 1. The histogram is plotted when the data
is split into 63 bins, represented as blue bars, which results
in a binwidth h = 0.99. The plot shows the histogram in the
interval [�10,10].

Does the histogram resemble the true density? Not
fully. The shape of the histogram is mainly ragged, despite

Fig. 1. Probability density function of cubic power of a Gaussian
distributed random variable X.

1 For interpretation of color in Figs. 1 and 3, the reader is referred to the
web version of this article.

Table 1
Evolution of the statistical density estimation techniques.

Year Author Contribution

1632 Galileo Histogram-like diagrams [6]
1662 Graunt Binned frequency curve [9,10]
1891 Pearson Data representation method using columns [6]
1894 Pearson ‘Histogram’ term [11]
1932 Fisher Histogram as statistical method for research
1951 Fix and Hodges Nonparametric density estimation [12]
1956 Rosenblatt Weight function for nonparametric density estimation [13]
1962 Parzen Statistical analysis of Parzen’s method [14]

Cencov Introduction of orthogonal Series for density estimation [4]
1964 Cacoullos Parzen’s method for multivariate data
1966 Cacoullos ‘Kernel function’ term [4]
1965 Loftsgaarden and Quesenberry Kernel density estimation for multivariate data [15]
1969 Watson Density estimation by orthogonal series [4]
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