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A B S T R A C T

Many theoretical models suggest that neural oscillations play a role in learning or retrieval of temporal se-
quences, but the extent to which oscillations support sequence representation remains unclear. To address this
question, we used scalp electroencephalography (EEG) to examine oscillatory activity over learning of different
object sequences. Participants made semantic decisions on each object as they were presented in a continuous
stream. For three “Consistent” sequences, the order of the objects was always fixed. Activity during Consistent
sequences was compared to “Random” sequences that consisted of the same objects presented in a different order
on each repetition. Over the course of learning, participants made faster semantic decisions to objects in
Consistent, as compared to objects in Random sequences. Thus, participants were able to use sequence
knowledge to predict upcoming items in Consistent sequences. EEG analyses revealed decreased oscillatory
power in the theta (4–7 Hz) band at frontal sites following decisions about objects in Consistent sequences, as
compared with objects in Random sequences. The theta power difference between Consistent and Random only
emerged in the second half of the task, as participants were more effectively able to predict items in Consistent
sequences. Moreover, we found increases in parieto-occipital alpha (10–13 Hz) and beta (14–28 Hz) power
during the pre-response period for objects in Consistent sequences, relative to objects in Random sequences.
Linear mixed effects modeling revealed that single trial theta oscillations were related to reaction time for future
objects in a sequence, whereas beta and alpha oscillations were only predictive of reaction time on the current
trial. These results indicate that theta and alpha/beta activity preferentially relate to future and current events,
respectively. More generally our findings highlight the importance of band-specific neural oscillations in the
learning of temporal order information.

1. Introduction

Episodic memories can be conceptualized as temporally-organized
sequences of events (Allen & Fortin, 2013). Computational models
suggest that neural oscillations—rhythmic fluctuations in the excit-
ability of large neuronal populations—might play a role in the coding of
temporal sequences (Lisman & Idiart, 1995; Lisman & Jensen, 2013). In
humans, oscillatory power in the theta band (4–7 Hz) is readily ob-
servable in scalp electroencephalography (EEG), magnetoencephalo-
graphy (MEG), and intracranial recordings. Available evidence in-
dicates that theta oscillations may be generated by a network that
includes the hippocampus, medial prefrontal cortex, and medial/lateral
parietal cortex (see Hsieh & Ranganath, 2014, for review). Critically,
neuroimaging studies have implicated these regions in encoding (e.g.
Ekstrom & Bookheimer, 2007; Jenkins & Ranganath, 2010; Tubridy &
Davachi, 2011) and representation (Hsieh and Ranganath, 2015; Hsieh,

Gruber, Jenkins, & Ranganath, 2014; Kalm, Davis, & Norris, 2013) of
event sequences.

Scalp EEG studies have provided evidence that theta power is cri-
tical for successful episodic encoding and retrieval (Fuentemilla,
Barnes, Düzel, & Levine, 2014; Long, Burke, & Kahana, 2014;
Rozengurt, Barnea, Uchida, & Levy, 2016; Sederberg, Kahana, Howard,
Donner, & Madsen, 2003). Available evidence also suggests that theta
activity might contribute to sequence processing (e.g., Heusser,
Poeppel, Ezzyat, & Davachi, 2016; Hsieh et al., 2011; Roberts et al.,
2013). For instance, EEG studies of working memory (Hsieh et al.,
2011; Roberts et al., 2013) have shown that theta power is higher
during active maintenance of temporal order information than during
maintenance of detailed object information. These findings indicate
that theta power could reflect online maintenance of temporal order
relationships. Some evidence, however, suggests an alternate possibi-
lity—that theta activity could reflect prediction errors. Indeed,
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numerous studies have found that theta power is increased following
erroneous responses, and the evidence indicates that these increases
reflect feedback or error-driven learning (Cavanagh & Frank, 2014;
Cavanagh et al., 2012; Cavanagh, Frank, Klein, & Allen, 2009, 2010;
Cohen, 2011; Cohen, Elger, & Ranganath, 2007). Recordings from non-
human primates (Brincat & Miller, 2015) have also provided support for
the importance of theta oscillations in error-driven learning, showing
increased oscillatory synchrony in the theta band between hippo-
campus and prefrontal cortex following errors that decrease as a func-
tion of learning. Thus, it is possible that theta oscillations would be
most prominent as participants are learning sequence information (i.e.,
when prediction error is high), and that it should decline as one learns
to use sequence knowledge to predict upcoming events (see Clarke
et al., 2017).

To examine the extent to which theta oscillations support sequence
learning or representation, we used scalp electroencephalography
(EEG) to record oscillatory activity as participants performed a se-
quence-learning task. EEG was recorded as participants made simple
semantic judgments on a stream of consecutively presented objects,
consisting of sequences of objects that were presented in the same order
on each repetition (“Consistent”) and sequences of objects that ap-
peared in a different order on each repetition (“Random”). Because
objects in Consistent and Random sequences were equally familiar,
comparison of the two conditions allowed us to investigate learning of
temporal relationships that enabled prediction of upcoming objects in
Consistent sequences. To investigate the role of oscillatory activity
during learning of structured order information, we directly contrasted
activity between Consistent and Random sequences over the course of
learning. We characterized the timing and functional characteristics of
activity in the theta, alpha, and beta bands, thereby allowing us to
identify whether any learning-related effects were band-specific.

2. Materials and Methods

2.1. Participants

Twenty healthy (6 males) undergraduate students from the
University of California at Davis were included in this study. All par-
ticipants had normal or corrected-to-normal vision. The Institutional
Review Board at the University of California at Davis approved the
study. Written informed consent was obtained from each subject before
the experiment.

2.2. Task procedures

Task procedures were modified from Hsieh et al. (2014). The cur-
rent study consisted of two parts: a sequence learning session and a
sequence retrieval session. EEG data were only acquired during the
sequence learning session. Therefore, EEG analyses and results reported
in this paper focus on the sequence-learning portion of the experiment.
The learning session consisted of four study-test blocks. During the
study phase of each block, participants were presented with a stream of
objects, each presented for 1000ms, and separated by a 1500ms fixa-
tion cross. The stream consisted of repetitions of six different five-object
sequences. The Fixed sequence consisted of five distinct objects, pre-
sented in the same order on each repetition. Objects in the Fixed se-
quence did not overlap with objects in other sequences (see Fig. 2A).
Two overlapping sequences (“X1” and “X2”) also consisted of five ob-
jects presented in the same order on each repetition, but unlike the
Fixed sequence, X1 and X2 sequences shared common objects in posi-
tions 2 and 3 (see Fig. 2A). Two Random sequences that each consisted
of five distinct objects, presented in a different pseudorandom order on
each repetition. As a result, participants could not learn a consistent
temporal relationship between objects in the Random sequences. Lastly,
a “Novel” sequence was presented, consisting of trial-unique objects
that were only presented once in the entire experiment. In other words,

a completely new set of five objects was presented on every repetition
of the Novel sequence. Novel sequences were not included in the ana-
lyses reported here, as this manuscript is focused on changes in EEG
oscillations over the course of sequence learning, rather than item
learning.

Each object sequence was presented six times during the study
phase of each study-test block, with the constraints that: (1) there were
no back-to-back repetitions of the same sequence type, and (2) all ob-
ject sequences must have been presented before subsequent repetitions.
To keep participants actively engaged and obtain behavioral measures
of sequence learning, participants were required to make a semantic
decision to each presented object in the continuous object stream, based
on a semantic question (e.g. “Is the presented object living?”) provided
at the beginning of the study phase of each study-test block. A different
semantic question was used in different study-test blocks. Because the
sequences were presented contiguously, there were no obvious divi-
sions between different object sequences. However, participants were
instructed to look out for, and learn, the sequence relationships.

During the test phase of each block, participants were asked to recall
each object sequence (except for the Novel sequences). On each self-
paced test trial, five objects from a sequence were simultaneously
presented in a random order from left to right on the screen.
Participants were asked to reconstruct the temporal order in which
these objects appeared during the study phase. Participants were ad-
ditionally instructed that, if there was no consistent temporal order
(which was true for objects in the Random sequences), then they were
to put the items in any order. After each test trial, the correct order of
the objects was presented on the screen. For the Random sequences, the
objects were shown in a random order during the feedback period. Each
sequence type was tested two times in each test block, with the con-
straint that: (1) there were no back-to-back tests of a particular se-
quence type, and (2) each sequence was tested once before any se-
quence was retested.

2.3. Behavioral analyses

Our primary hypotheses were centered on sequence learning, and
we therefore focused on contrasting EEG and behavioral data between
the Consistent sequences (collapsed across Fixed, X1, and X2 sequences)
and the Random sequences. Study blocks were also divided into early
(Blocks 1 and 2) and late (Blocks 3 and 4) blocks. ANOVAs were con-
ducted using the AFEX package in R (Singmann et al., 2017). The
Greenhouse Geisser Correction (Greenhouse & Geisser, 1959) was ap-
plied to account for violations of sphericity where appropriate.

2.4. EEG data acquisition

EEG was recorded from 128 silver/silver chloride electrodes
mounted in an elastic cap using an ActiveTwo EEG recording system
(Biosemi, https://www.biosemi.com/). The positioning of the 128
electrodes was in accordance with an extended version of the interna-
tional 10/20 system (Klem, Luders, Jasper, & Elger, 1958; Oostenveld &
Praamstra, 2001). Additional electrodes were placed on the mastoids,
outside the outer canthi of both eyes, and above and below the left eye.
Data were collected at a sampling rate of 2048 Hz.

2.5. EEG Analysis

All data analyses were performed offline using the EEGLab Toolbox
(Delorme and Makeig, 2004) and Fieldtrip Toolbox (Oostenveld, Fries,
Maris, & Schoffelen, 2011). The continuous EEG data were first high-
pass filtered at 0.5 Hz and then down sampled to 512 Hz. Channels with
excessive noise due to channel failure were identified and their data
were interpolated using spherical interpolation (Perrin, Pernier,
Bertrand, & Echallier, 1989). Continuous EEG data were then seg-
mented to single trials time-locked to response onsets (−600ms to
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