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24It has recently become widely appreciated that value-based decision making is supported by multiple
25computational strategies. In particular, animal and human behavior in learning tasks appears to include
26habitual responses described by prominent model-free reinforcement learning (RL) theories, but also
27more deliberative or goal-directed actions that can be characterized by a different class of theories,
28model-based RL. The latter theories evaluate actions by using a representation of the contingencies of
29the task (as with a learned map of a spatial maze), called an ‘‘internal model.’’ Given the evidence of
30behavioral and neural dissociations between these approaches, they are often characterized as dissocia-
31ble learning systems, though they likely interact and share common mechanisms.
32In many respects, this division parallels a longstanding dissociation in cognitive neuroscience between
33multiple memory systems, describing, at the broadest level, separate systems for declarative and proce-
34dural learning. Procedural learning has notable parallels with model-free RL: both involve learning of
35habits and both are known to depend on parts of the striatum. Declarative memory, by contrast, supports
36memory for single events or episodes and depends on the hippocampus. The hippocampus is thought to
37support declarative memory by encoding temporal and spatial relations among stimuli and thus is often
38referred to as a relational memory system. Such relational encoding is likely to play an important role in
39learning an internal model, the representation that is central to model-based RL. Thus, insofar as the
40memory systems represent more general-purpose cognitive mechanisms that might subserve perfor-
41mance on many sorts of tasks including decision making, these parallels raise the question whether
42the multiple decision systems are served by multiple memory systems, such that one dissociation is
43grounded in the other.
44Here we investigated the relationship between model-based RL and relational memory by comparing
45individual differences across behavioral tasks designed to measure either capacity. Human subjects per-
46formed two tasks, a learning and generalization task (acquired equivalence) which involves relational
47encoding and depends on the hippocampus; and a sequential RL task that could be solved by either a
48model-based or model-free strategy. We assessed the correlation between subjects’ use of flexible,
49relational memory, as measured by generalization in the acquired equivalence task, and their differential
50reliance on either RL strategy in the decision task. We observed a significant positive relationship
51between generalization and model-based, but not model-free, choice strategies. These results are consis-
52tent with the hypothesis that model-based RL, like acquired equivalence, relies on a more general-
53purpose relational memory system.
54� 2014 Elsevier Inc. All rights reserved.
55

56

57
58 1. Introduction

59 There can be multiple paths to a decision. For example, as we
60 learn by trial and error about the value of different options, we
61 can select among them based simply on how much reward has
62 previously followed each of them, or instead flexibly reevaluate

63them in the moment by taking into account their particular
64expected consequences and the current value of those conse-
65quences. The latter strategy allows us to choose flexibly if our cur-
66rent needs or tastes have changed: for instance, if we progress from
67thirst to hunger. Two distinct classes of control systems developed
68in the engineering literature, called model-free and model-based
69reinforcement learning (RL), describe these computationally and
70representationally different approaches to value-based decision
71making (Sutton & Barto, 1998).
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72 Much evidence in both humans and animals supports the idea
73 that the brain implements both of these approaches (Doll, Simon,
74 & Daw, 2012). In particular, model-free RL theories (Montague,
75 Dayan, & Sejnowski, 1996) maintain an estimate of the net reward
76 previously received following each action, updating it in light of
77 each experience using a reward prediction error signal. These
78 theories explain the behavioral phenomena of habits (Daw, Niv,
79 & Dayan, 2005)—inflexible response tendencies that often arise
80 after overtraining (Adams, 1982)—and, neurally, offer the predom-
81 inant computational account of the reward prediction error-like
82 phasic responses of dopamine neurons and of similar signals in
83 human fMRI at striatal dopamine targets (Glimcher, 2011). The
84 reward prediction error signal, the difference in reward received
85 and reward expected, is the computational core of model-free RL
86 that drives increases in action values following rewards and
87 decreases following punishments. The phasic bursts and dips of
88 midbrain dopamine neurons following rewards and punishments
89 mirror this teaching signal (Montague et al., 1996). Dopaminergic
90 projections to striatum modulate activation and plasticity
91 (Reynolds & Wickens, 2002) of corticostriatal synapses, driving
92 reward and punishment learning (Hikida, Kimura, Wada,
93 Funabiki, & Nakanishi, 2010). Optogenetic work indicates a causal
94 role for this signaling pathway in reward learning, consistent with
95 the predictions of model-free RL (Steinberg et al., 2013; Tsai et al.,
96 2009). Despite the success of this theory, model-free RL cannot
97 explain more flexible, goal-directed actions that have been demon-
98 strated experimentally using tasks such as latent learning or
99 reward devaluation (Adams, 1982; Tolman & Honzik, 1930), nor

100 the neural correlates of these behavioral effects (Daw, Gershman,
101 Seymour, Dayan, & Dolan, 2011; Glascher, Daw, Dayan, &
102 O’Doherty, 2010; Tricomi, Balleine, & O’Doherty, 2009), nor the
103 correlates of in-the-moment evaluation of candidate actions
104 (Pfeiffer & Foster, 2013; van der Meer, Johnson, Schmitzer-
105 Torbert, & Redish, 2010). These latter phenomena, instead, are well
106 explained by model-based RL. Instead of net action values, model-
107 based algorithms learn an ‘‘internal model’’ of the task—how differ-
108 ent actions lead to resulting situations or outcomes, and how those
109 outcomes map onto value—which then can be used to evaluate
110 candidate actions’ values through a sort of mental simulation or
111 search at decision time.
112 Many experiments suggest that these two learning approaches
113 trade off differentially, depending on task features such as the
114 amount of training (Adams, 1982; Tricomi et al., 2009), dual-task
115 interference (Otto, Gershman, Markman, & Daw, 2013, perhaps by
116 promoting an advantage to striatal over hippocampal function,
117 Foerde, Knowlton, & Poldrack, 2006), pharmacological interventions
118 (Dickinson, Smith, & Mirenowicz, 2000; Wunderlich, Smittenaar, &
119 Dolan, 2012) or brain lesions affecting areas associated with either
120 system (Yin, Knowlton, & Balleine, 2004; Yin, Ostlund, Knowlton,
121 & Balleine, 2005). Further, these learning approaches also differ
122 spontaneously across individuals (Skatova, Chan, & Daw, 2013). All
123 these results suggest that these two sorts of learning rely on neurally
124 and cognitively dissociable systems (though interacting and sharing
125 some common mechanisms, e.g. Daw et al. (2011)). However,
126 although the cognitive and neural mechanisms supporting model-
127 free RL are reasonably well understood, those supporting model-
128 based RL are currently much less clear.
129 This profile of relatively better and worse understanding about
130 the two systems is complementary to that for a similar dichotomy
131 in another area of research, memory. Decades of work in cognitive
132 neuroscience concerns the brain’s multiple systems for memory.
133 Traditionally, the study of memory systems has focused on a
134 distinction between procedural and declarative memory, which
135 are thought to differ in the kinds of representations they form, the
136 contexts in which they are elicited, and the neural systems that sup-
137 port them (e.g. Squire, 1992; Gabrieli, 1998; Knowlton, Mangels, &

138Squire, 1996). The distinction between memory systems was ini-
139tially dramatically supported by observations that declarative
140memory was impaired in patients with amnesia due to hippocam-
141pal damage, while procedural memory was relatively spared in
142the same patients (Corkin, 1968). This effect has subsequently been
143demonstrated in amnestics with varying etiologies in numerous
144incrementally acquired, feedback-driven procedural learning tasks,
145such as mirror-reading (Cohen & Squire, 1980; Gabrieli, Corkin,
146Mickel, & Growdon, 1993), the pursuit-rotor (Heindel, Salmon,
147Shults, Walicke, & Butters, 1989), and weather prediction tasks
148(Knowlton et al., 1996). In contrast, degeneration of the nigrostriatal
149dopamine system in Parkinson’s disease and loss of striatal integrity
150in Huntington’s disease impairs procedural memory, but leaves
151declarative memory relatively intact (Heindel et al., 1989;
152Knowlton et al., 1996; Martone, Butters, Payne, Becker, & Sax,
1531984). The dissociable behavioral and neural characteristics of these
154memory systems are now well-described—procedural memory is
155thought to be inflexible, implicit, incremental, and reliant on stria-
156tum, whereas declarative memories are more flexible, relational,
157possibly subject to conscious access, and reliant on hippocampus.
158Thus, in many ways, this distinction appears to be closely related
159to that between model-free and model-based RL, with model-free
160RL corresponding to procedural memory (Knowlton et al., 1996),
161and model-based corresponding to declarative memory (Daw &
162Shohamy, 2008; Dickinson, 1980). The computational and neural
163mechanisms formalized by model-free theories and tasks also
164explain classic procedural learning tasks, which feature incremental
165learning from trial-to-trial feedback, and implicate the striatum and
166its dopaminergic inputs (Knowlton et al., 1996; Shohamy et al.,
1672004). Evidence that distraction by cognitive load disrupts model-
168based, but not model-free RL (Otto, Gershman, et al., 2013) is mir-
169rored by evidence that such interference disrupts declarative, but
170not procedural task learning (Foerde et al., 2006). Better under-
171standing of the relationship between decision making and memory
172systems has the potential to shed light on both areas, in particular
173because in memory, much is known about the brain’s systems for
174declarative memory, which might provide a crucial relational
175encoding mechanism underlying model-based RL. (Conversely,
176our relatively strong knowledge of the brain’s mechanisms for
177model-free RL may fill in many gaps in our understanding of proce-
178dural memory.) Thus, in the present study we aimed to examine evi-
179dence for these correspondences by studying the relationship
180between tasks from the memory and decision literature.
181A key feature of the hippocampal memory system, which is par-
182ticularly relevant to model-based RL is the encoding of relations—
183associations between multiple stimuli or events (Cohen &
184Eichenbaum, 1993). A hallmark of relational memories that
185suggests a parallel to model-based RL is that multiple, previously
186learned associations can be combined in novel ways. A family of
187classic memory tasks including acquired equivalence (Honey &
188Hall, 1989), associative inference (Bunsey & Eichenbaum, 1996),
189and transitive inference (Davis, 1992) assess this feature of
190relational memory. In these tasks, subjects first learn sets of over-
191lapping stimulus relationships and then generalize to or infer the
192relationships between never-before-seen stimulus combinations
193in a test phase. Neurally, successful performance of these relational
194memory tasks is associated with the hippocampus (Greene, Gross,
195Elsinger, & Rao, 2006; Myers et al., 2003; Preston, Shrager,
196Dudukovic, & Gabrieli, 2004; Shohamy & Wagner, 2008).
197These features of relational memory suggest a correspondence
198to model-based RL. Unlike the response- or reward-related associ-
199ations underlying model-free learning—which are clearly in the
200domain of procedural memory (Knowlton, Squire, & Gluck, 1994;
201Nissen & Bullemer, 1987)—model-based RL relies on learning a
202world model, that is, an arbitrary set of associations between
203stimuli or situations (as with a map of a spatial task), which can
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