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We have developed a Hierarchical Look-Ahead Trajectory Model (HiLAM) that incorporates the firing pat-
tern of medial entorhinal grid cells in a planning circuit that includes interactions with hippocampus and
prefrontal cortex. We show the model’s flexibility in representing large real world environments using
odometry information obtained from challenging video sequences. We acquire the visual data from a
camera mounted on a small tele-operated vehicle. The camera has a panoramic field of view with its focal
point approximately 5 cm above the ground level, similar to what would be expected from a rat’s point of
view. Using established algorithms for calculating perceptual speed from the apparent rate of visual
change over time, we generate raw dead reckoning information which loses spatial fidelity over time
due to error accumulation. We rectify the loss of fidelity by exploiting the loop-closure detection ability
of a biologically inspired, robot navigation model termed RatSLAM. The rectified motion information
serves as a velocity input to the HiLAM to encode the environment in the form of grid cell and place cell
maps. Finally, we show goal directed path planning results of HILAM in two different environments, an
indoor square maze used in rodent experiments and an outdoor arena more than two orders of
magnitude larger than the indoor maze. Together these results bridge for the first time the gap between
higher fidelity bio-inspired navigation models (HiLAM) and more abstracted but highly functional bio-
inspired robotic mapping systems (RatSLAM), and move from simulated environments into real-world

studies in rodent-sized arenas and beyond.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The ability to successfully navigate to a predefined location is
often a life crucial task for many higher order organisms. The goal
location might be a food source, a temporary shelter, a nest, or
some other desired location. Squirrels are effective at rediscovering
their previously stashed food sources (Jacobs & Liman, 1991). Rats
can learn to revisit or to avoid known food locations (Brown, 2011;
Olton & Schlosberg, 1978). Mice learn to avoid an unpleasant envi-
ronment, such as a water-maze, by finding an out-of-sight escape
platform after only a handful of learning trials (Morris, Garrud,
Rawlins, & O’Keefe, 1982; Redish & Touretzky, 1998; Steele &
Morris, 1999). If a visible goal location is in the field-of-view of
the agent, the navigation task becomes trivial: The agent proceeds
towards the visible goal location avoiding potential obstacles on
the way. However, if the goal location is out of visual range or
hidden (as in the water-maze) then navigation mechanisms based
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on cognitive capabilities that can exploit the previously encoded
and currently out of view goal location become important to guide
the agent to the goal. Such a navigation mechanism would not nec-
essarily need to pinpoint the goal location. It would be sufficient to
guide the agent to the general goal location neighborhood such
that the goal is in the visual range of the agent. Consequently,
the visually driven navigation system can take over to home the
agent into the goal location, an approach that has been used suc-
cessfully by the robotic mapping system used in this research
(Milford & Wyeth, 2009).

There is compelling evidence gathered from physiological and
behavioral data suggesting the existence of spatial cognitive mech-
anisms in the brain representing the agent’s spatial environment
and aiding it during goal-directed navigation experiments. The
entorhinal cortex and hippocampus play a role in goal-directed
behavior towards recently learned spatial locations in an environ-
ment. Rats show impairments in finding the spatial location of a
hidden platform in the Morris water-maze after lesions of the hip-
pocampus, postsubiculum, or entorhinal cortex (Morris, Garrud,
Rawlins, & O’Keefe, 1982; Steele & Morris, 1999; Steffenach,
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Witter, Moser, & Moser, 2005; Taube, Kesslak, & Cotman, 1992).
Recordings from several brain areas in behaving rats show neural
spiking activity relevant to goal-directed spatial behavior, includ-
ing grid cells in the entorhinal cortex that fire when the rat is in
a repeating regular array of locations in the environment falling
on the vertices of tightly packed equilateral triangles (Hafting,
Fyhn, Molden, Moser, & Moser, 2005), place cells in the hippocam-
pus that respond to mostly unique spatial locations (O’Keefe and
Nadel, 1978), head direction cells in the postsubiculum that
respond to narrow ranges of allocentric head direction (Taube,
2007), and cells that respond to translational speed of running
(O’Keefe, Burgess, Donnett, Jeffery, & Maguire, 1998).

Some of the evidence related to the goal-directed navigation
planning include forward sweeping events of spiking activity in
rat place cell ensembles that have been observed during vicarious
trial and error experiments (Johnson & Redish, 2007; Pfeiffer &
Foster, 2013) and sharp wave ripple events during goal-directed
spatial tasks (Davidson, Kloosterman, & Wilson, 2009; Foster &
Wilson, 2006; Jadhav, Kemere, German, & Frank, 2012; Louie &
Wilson, 2001). Furthermore, brief sequences of place cell ensemble
activity encoding trajectories from an agent’s current location have
been observed to be strongly biased towards the agent’s predicted
goal location (Pfeiffer & Foster, 2013).

In this work we combine two biologically inspired models that
generate and maintain representations of their environment as col-
lections of simulated spatially tuned neurons such as grid cells and
place cells.

The first one of these models is the RatSLAM model (Milford,
Wyeth, & Prasser, 2004) which has been implemented on real
robotic agents and has been shown to match or outperform the
state of the art probabilistic robotic systems in encoding and nav-
igating large environments over long periods of time (Milford &
Wyeth, 2009; Prasser, Milford, & Wyeth, 2006). However, the cur-
rent RatSLAM model is not easily scalable and its goal directed nav-
igation module is less biologically plausible than its Simultaneous
Localization and Mapping (SLAM) component.

The second model we use in our work is the HiLAM (Erdem &
Hasselmo, 2013), a biologically inspired goal-directed navigation
model based on look-ahead trajectories in a hierarchical collection
of simulated grid cells and place cells. While HiLAM is highly capa-
ble in simulating behavioral goal-directed navigation experiments,
it is prone to failure in the presence of noisy and degraded input,
since it does not have mechanisms in place to detect and to correct
for the stochastic loss of fidelity in its state representation. Conse-
quently, like many other high fidelity computational models, the
HiLAM has not been previously tested on real life data.

In this work we combine the RatSLAM model and the HiLAM
such that their individual fortes complement each other in gener-
ating and maintaining stable spatial maps using real life visual data
(RatSLAM) and in using the generated maps for goal-directed path
planning in a biologically plausible manner (HiLAM).

2. Material and methods

The framework presented in this work shows collaboration
between two previously developed computational models for spa-
tial mapping and navigation. While the RatSLAM model generates
rectified odometry data, the Hierarchical Look-Ahead Trajectory
Model (HiLAM) provides a mechanism for goal directed navigation.
We also show the scalability of the HILAM using odometry data
extracted from noisy real-life visual information collected from a
small remote controlled vehicle referred to as the “agent”. Using
ground truth extracted from external cameras, we show the goal
directed navigation accuracy in two environments, a small
open-field square indoor maze and an outdoor area that is larger

than the indoor maze by two orders of magnitude. We first extract
the unrectified odometry data from the optic flow information
implicit in the camera’s field of view. Then, we rectify the raw
odometry data by detecting loop-closure points in time and space
using the RatSLAM model. Finally, we form spatial representations
using grid cells and place cells in the HILAM and select trajectories
to goal locations using hierarchical linear look-ahead probes in this
model.

2.1. Hierarchical Look-Ahead Trajectory Model (HiLAM)

In the HiLAM, head direction cells modulated by proprioceptive
velocity data provide inputs to downstream grid cells driven by a
phase interference model (Blair, Gupta, & Zhang, 2008; Burgess,
2008; Burgess, Barry, & O’Keefe, 2007; Hasselmo, 2008). Several
grid cells with different scales and field spacings converge to form
a single place cell. Each place cell also provides downstream spik-
ing input to a single reward cell proposed to represent prefrontal
cortex mechanisms, i.e., place cells and reward cells have a bijec-
tive topology (Fig. 1).

A head direction cell is a neuron that significantly increases its
firing rate when the rat’s allocentric head orientation in the world
horizontal plane, i.e., the head azimuth, approaches a specific angle
which is referred to as its preferred direction (Sargolini et al., 2006;
Taube, Muller, & Ranck, 1990). The head direction cell’s preferred
direction depends on the environmental cues and proprioceptive
inputs. The head direction cells simulated in the HiLAM are cosine
tuned and velocity modulated. Given the agent’s instantaneous
velocity vector #(t) and the preferred direction 0; of a simulated
head direction cell i its output d; can be given as:

cos(6;)

di(t) =v(t) - sin(0))

(1)

A grid cell is a neuron type which increases its firing rate signif-
icantly when the animal traverses a regular array of periodic loca-
tions in the environment. The collection of locations where an
individual grid cell fires, i.e., the grid cell’s firing fields, forms a
two dimensional periodic pattern with regular inter-field intervals
and similar field areas. More specifically, the firing fields of a single
grid cell tile the infinite two dimensional plane as the vertices of
equilateral triangles. Extensive experimental data show the exis-
tence of grid cells with different inter-field spacing and field areas
along the dorsal to ventral axis of the medial entorhinal cortex
(Barry & Burgess, 2007; Hafting et al., 2005; Stensola et al.,
2012). In a single rat, grid cells in the medial entorhinal cortex
are organized in anatomically overlapping modules with distinct
firing field orientation and discrete scales (Stensola et al., 2012).
The simulated grid cells found in the HiLAM use a variant of the
persistent spiking model (Hasselmo, 2008) which belongs to the
class of phase interference models (Burgess, Barry, & O’Keefe,
2007) for grid cells. The spiking output of the jth grid cell g; can
be defined as:

B (8) = 27T<ff +b; /Otdi(r)d‘c>

S (L) = H<C05(¢(m(t) + Vi) — sthr) (2)
g(t) = Hs(t)

S€S;

where ¢;;) is the phase of the persistent spiking cell modulated
by the ith head direction cell, f is the frequency, b; is the scaling
factor for all persistent spiking cells projecting to the jth grid
cell, s;) is the persistent spiking cell signal, i is the phase off-
set, Sy, iS the action potential threshold, H is the Heaviside func-
tion satisfying H(0)=0, and S; is the set of persistent spiking
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