
1

2 Invited Review

4 A universal role of the ventral striatum in reward-based learning:
5 Evidence from human studies

6

7

8 Reka Daniel a,b,⇑
Q1 , Stefan Pollmann a,c

9 a Department of Experimental Psychology, Otto-von-Guericke-Universität Magdeburg, D-39016 Magdeburg, Germany
10 b Princeton Neuroscience Institute, Princeton University, Green Hall, Princeton, NJ 08540, USAQ2
11 c Center for Behavioral Brain Sciences, D-39016 Magdeburg, Germany

12
13

1 5
a r t i c l e i n f o

16 Article history:
17 Received 6 December 2013
18 Revised 1 May 2014
19 Accepted 3 May 2014
20 Available online xxxx

21 Keywords:
22 Ventral striatum
23 Reward
24 Feedback
25 Learning
26 fMRI
27 Human
28

2 9
a b s t r a c t

30Reinforcement learning enables organisms to adjust their behavior in order to maximize rewards. Elec-
31trophysiological recordings of dopaminergic midbrain neurons have shown that they code the difference
32between actual and predicted rewards, i.e., the reward prediction error, in many species. This error signal
33is conveyed to both the striatum and cortical areas and is thought to play a central role in learning to opti-
34mize behavior. However, in human daily life rewards are diverse and often only indirect feedback is avail-
35able. Here we explore the range of rewards that are processed by the dopaminergic system in human
36participants, and examine whether it is also involved in learning in the absence of explicit rewards. While
37results from electrophysiological recordings in humans are sparse, evidence linking dopaminergic activ-
38ity to the metabolic signal recorded from the midbrain and striatum with functional magnetic resonance
39imaging (fMRI) is available. Results from fMRI studies suggest that the human ventral striatum (VS)
40receives valuation information for a diverse set of rewarding stimuli. These range from simple primary
41reinforcers such as juice rewards over abstract social rewards to internally generated signals on perceived
42correctness, suggesting that the VS is involved in learning from trial-and-error irrespective of the specific
43nature of provided rewards. In addition, we summarize evidence that the VS can also be implicated when
44learning from observing others, and in tasks that go beyond simple stimulus-action-outcome learning,
45indicating that the reward system is also recruited in more complex learning tasks.
46� 2014 Published by Elsevier Inc.
47

48

49

50 1. Introduction

51 As any living organism, humans are faced with the need to
52 make decisions about how to act in response to a plethora of envi-
53 ronmental cues every day. Often, we encounter similar situations
54 repeatedly, which enables us to use past experiences to predict
55 future outcomes (Cohen, 2008). Learning from trial and error, or
56 reinforcement learning, has been extensively studied in the last
57 decades. Normative computational models have proven to be suc-
58 cessful in explaining learning in terms of a reward prediction error,
59 i.e., a mismatch between predicted and actual rewards. On a neural
60 level, it has been shown that the dopaminergic midbrain neurons,
61 with their massive projections to the ventral striatum (VS), repre-
62 sent this reward prediction error and play a central role in reward-
63 based learning (for reviews see Delgado (2007), Niv and Montague
64 (2008), O’Doherty, Hampton and Kim (2007), and Schultz (2007)).

65However, in ecologically valid settings, decision problems vary
66hugely in complexity: organisms may have to decide which objects
67in the environment to categorize as nutrition, but also which part-
68ner to choose, or, in the human case, what career path to follow,
69and how to provide for retirement. These problems also vary in
70the rewards they provide: from simple primary and secondary
71reinforcers such as food, the option to reproduce, and money, to
72more abstract rewards such as love, social approval and (financial)
73stability. For many of these decisions, feedback from the environ-
74ment is sparse and delayed (Hogarth, 2006). In addition, learning
75from errors is costly, and their commission is often avoidable. In
76these situations we have to additionally rely on other mechanisms
77than learning from trial and error, such as building abstract struc-
78tural representations (Diuk, Tsai, Wallis, Botvinick, & Niv, 2013;
79Ribas-Fernandes et al., 2011), mental models of the environment
80(Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Gl_scher, Daw,
81Dayan, & O’Doherty, 2010) or learning from others (Burke, Tobler,
82Baddeley, & Schultz, 2010). Many species are able to learn from
83such indirect experience, i.e., by observing the outcome of others
84and imitating their actions (Chamley, 2004). Humans in particular
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85 have developed a complex form of communication, allowing them
86 to pass on learned information by providing instructions (Li,
87 Delgado, & Phelps, 2011).
88 The neural substrates of learning from abstract, incomplete or
89 absent rewards are only currently being investigated. Humans
90 are the ideal species to study these tasks: they are willing to work
91 without explicit rewards after each trial, which facilitates the study
92 of observational learning, and can be verbally instructed to
93 examine the influence of prior knowledge. In addition, experimen-
94 tal methodology to study higher cognitive functions is well
95 established, and a wealth of experimental paradigms, formal
96 models and empirical behavioral data exists on learning in
97 humans. Using functional magnetic resonance imaging (fMRI) it
98 is possible to non-invasively study the brain activation of human
99 participants performing complex learning and decision making

100 tasks.
101 This review focuses on how central findings on the neural
102 underpinnings of animal learning can be replicated and elaborated
103 upon by examining different types of reward and more complex
104 forms of learning in human participants. To this end, we present
105 a summary of influential results in the animal literature, and
106 discuss how activation data obtained using fMRI relates to more
107 direct measures of neural firing as acquired in electrophysiological
108 recordings, and specifically to dopaminergic activity. We then go
109 on to summarize recent findings on the neural substrates of learn-
110 ing in humans, and argue that phylogenetically old pathways that
111 mediate simple stimulus-response learning are recruited even in
112 the absence of explicit rewards to solve complex decision making
113 tasks.

114 2. Reinforcement learning and the dopaminergic system

115 In order to optimally behave in any given environment it is
116 crucial to determine which actions result in rewarding events
117 given a specific state of the environment. These rewarding events
118 come in many different shapes and flavors: even primary rewards
119 can be as diverse as the opportunity to mate or a drop of juice. Any
120 agent striving to maximize positive outcomes can benefit from a
121 system that unifies these diverse sensory inputs by encoding the
122 motivational properties of stimuli, thereby providing a ‘‘retina of
123 the reward system’’ (Schultz, 2007, 2008).

124 2.1. The dopaminergic system: A system for reward and motivation

125 The seminal experiments of Olds and Milner (1954) were a first
126 step towards identifying a system in the mammalian brain that is
127 dedicated to processing motivational information. They described
128 several brain sites in the rat where direct electrical stimulation
129 acted as a reinforcer, inciting the animal to stimulate itself. Subse-
130 quent experiments showed that the tissue inducing the highest
131 rates of self-stimulation is located in the medial forebrain bundle
132 (MFB), which is connected to dopamine cell bodies in the ventral
133 tegmental area (VTA) (Gallistel, Shizgal, & Yeomans, 1981), and
134 that self-stimulation of the MFB is related to fluctuations in
135 dopamine levels in one of the prominent targets of mesolimbic
136 dopamine neurons, the nucleus accumbens (Garris, Kilpatrick, &
137 Bunin, 1999; Hernandez et al., 2006). Gallistel et al. (1981) point
138 out three central properties of behavior during self-stimulation:
139 rats engage in self-stimulation with high vigor, i.e., a short latency
140 and high intensity of responding. In addition, they pursue self-
141 stimulation over other vital goals, and adjust their behavior
142 flexibly to the magnitude of recent stimulation. These three prop-
143 erties can be viewed as hallmarks of motivation: motivation
144 energizes the organism, directs its behavior towards a goal, and
145 enables learning about outcomes (Gallistel et al., 1981).

1462.2. The dopaminergic system in learning

147Dopaminergic neurotransmission has been associated with a
148wide variety of functions, many of which are important for
149optimizing behavior, i.e., for maximizing reward and minimizing
150aversive outcomes. Different firing modes of dopaminergic neu-
151rons have been associated with the facilitation of a wide range of
152motor, cognitive, and motivational processes (Bromberg-Martin,
153Matsumoto, & Hikosaka, 2010; Schultz, 2008), with determining
154the strength and rate of responding (Niv, Daw, Joel, & Dayan,
1552007), and with signaling different aspects of salience, including
156appetitive and aversive information (Bromberg-Martin et al.,
1572010; Schultz, 2007), novelty (Bunzeck & D_zel, 2006; Ljungberg,
1581992; Wittmann, Bunzeck, Dolan, & D_zel, 2007), and contextual
159deviance (Zaehle et al., 2013). However, the majority of recent
160research has focused on one specific aspect of the firing of dopami-
161nergic neurons: 75–80% of the cells convey a signal that is ideally
162suited to promote learning (Schultz, 2008). They respond with
163short-latency phasic bursts to unpredicted rewards and reward-
164predicting stimuli. Importantly, when rewards are fully predicted
165no response is observed, while the omission of predicted rewards
166leads to a decrease in baseline activity (Schultz, 2002) (see
167Fig. 1A). This behavior corresponds to a reward prediction error
168signal, i.e., to a coding of reward information as the difference
169between received and expected reward (Montague, Dayan, &
170Sejnowski, 1996; Schultz, Dayan, & Montague, 1997).
171A reward prediction error signal has also been postulated as a
172teaching signal in normative theories of reinforcement learning
173(Bertsekas & Tsitsiklis, 1996; Sutton & Barto, 1990). These theories
174focus on providing normative accounts of how agents can optimize
175their behavior (Niv & Montague, 2008). A wide variety of reinforce-
176ment learning algorithms exists, however most of them share
177some core features: they predict that whenever faced with a deci-
178sion, the agent calculates a value for each available option. In order
179to allow for random and exploratory behavior, these values are
180subsequently passed through a probabilistic function before the
181stimulus or action with the highest value is chosen. Whenever
182new information becomes available, e.g. in the form of an unpre-
183dicted reward or the omission of an expected reward, the values
184are updated using the reward prediction error multiplied by a
185learning rate (Cohen, 2008).
186Such a mechanism for calculating the expected subjective value
187of future states of the environment and updating it using a simple
188prediction error signal would benefit any living organism: it
189provides a mechanism to make predictions based on the similarity
190between past experiences and the current state of the environ-
191ment, enabling the organism to make informed decisions. When-
192ever these predictions are violated, they can be updated using a
193single scalar signal, without having to (re-)process all available
194sensory information (Schultz, 2008). A correspondence between
195the prediction error signals postulated by normative models and
196phasic dopaminergic firing was shown quantitatively (Bayer &
197Glimcher, 2005; Tobler, Fiorillo, & Schultz, 2005) and using several
198different paradigms, including blocking (Waelti, Dickinson, &
199Schultz, 2001) and conditioned inhibition (Tobler, Dickinson, &
200Schultz, 2003). This postulated role of short-latency firing of dopa-
201minergic midbrain neurons in signaling prediction errors has been
202termed the reward prediction error hypothesis of dopamine (for
203extensive reviews see Schultz (2002, 2006)).
204One potential mechanism by which phasic dopamine bursts
205could support learning is suggested by the observation that long-
206term potentiation in the striatum depends not only on strong
207pre- and postsynaptic activation, but also on dopamine release
208(this is sometimes referred to as the three-factor learning rule
209(Ashby & Ennis, 2006)). According to this model, the same dentritic
210spines of striatal medium spiny cells are contacted both by
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