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32It has been widely recognQ2 ized that the understanding of the brain code would require large-scale record-
33ing and decoding of brain activity patterns. In 2007 with support from Georgia Research Alliance, we have
34launched the Brain Decoding Project Initiative with the basic idea which is now similarly advocated by
35BRAIN project or Brain Activity Map proposal. As the planning of the BRAIN project is currently underway,
36we share our insights and lessons from our efforts in mapping real-time episodic memory traces in the
37hippocampus of freely behaving mice. We show that appropriate large-scale statistical methods are
38essential to decipher and measure real-time memory traces and neural dynamics. We also provide an
39example of how the carefully designed, sometime thinking-outside-the-box, behavioral paradigms can
40be highly instrumental to the unraveling of memory-coding cell assembly organizing principle in the
41hippocampus. Our observations to date have led us to conclude that the specific-to-general categorical
42and combinatorial feature-coding cell assembly mechanism represents an emergent property for
43enabling the neural networks to generate and organize not only episodic memory, but also semantic
44knowledge and imagination.
45� 2013 Published by Elsevier Inc.

46

47

48 1. IntrodQ4 uction

49 Aristotle has once pondered the concept of sensation and mem-
50 ory, and how they are produced in the mind. But it wasn’t until the
51 end of 19th century neuroscientists, such as Ramon Y. Cajal, had
52 begun to look into how this process may occur at the cellular level.
53 Fifty years after Cajal’s observations Donald Hebb postulated that
54 information processing in the brain may involve the coordinated
55 activity of large numbers of neurons, or cell assemblies (Hebb,
56 1949). This notion, although beautifully vague, makes a good sense
57 both from the computational and cellular perspective (Abbott &
58 Sejnowski, 1999; Bi & Poo, 2001; Bliss & Collingridge, 1993;
59 Malenka & Nicoll, 1999; Sanger, 2003; Shamir & Sompolinsky,
60 2004; Tsien, 2000; Wigstrom & Gustafsson, 1985). The major
61 challenge to date has been to identify the real-time brain activity
62 patterns and their corresponding cell assemblies, and to under-
63 stand how such cell assemblies, if any, are organized to generate
64 real-time perception, memory, and behavior.

65As early as 1920s, neuroscientists try to decipher the brain
66codes by searching for reliable correlation between firing patterns
67of neurons and behavioral functions for many decades (Adrian,
681926; Fuster, 1973; Gross, Rocha-Miranda, & Bender, 1972;
69Thompson, 2005; Zhou & Fuster, 1996). Edgar Adrian in his pio-
70neering recording showed that the firing rate of a frog muscle’s
71stretch receptor increases as a function of the weights on the mus-
72cle (Adrian, 1926), suggesting that information is conveyed by spe-
73cific firing patterns of neurons. However, due to a large amount of
74response-variability at the single neuron level in the brain even in
75response to identical stimulus (Bialek & Rieke, 1992; Lestienne,
762001), single neuron-based decoding schemes often produce sig-
77nificant errors in predictions about the stimulus identities or exter-
78nal information. The traditional way to deal with the response
79variability of single neurons is to average spike discharge of the
80neurons over repeated trials. Although the data averaging across
81trials permits the identification of response properties of the indi-
82vidual neurons, unfortunately, this practice invariably loses crucial
83information regarding real-time encoding process in the brain (Lin,
84Osan, & Tsien, 2006).
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85 Early efforts in examining population-level mechanisms relied
86 on the ‘‘reconstructed’’ ensembles of neurons from serially
87 recorded single neuron data. Such ‘‘reconstructed population
88 codes’’ can improve the classification and prediction of datasets
89 (Eskandar, Richmond, & Optican, 1992; Gochin, Colombo, Dorfman,
90 Gerstein, & Gross, 1994; Miller, Li, & Desimone, 1993). With tech-
91 nical developments over the past decades, simultaneous monitor-
92 ing of activities of many neurons has become more feasible
93 (Buzsaki, 2004; Harris, Henze, Csicsvari, Hirase, & Buzsaki, 2000;
94 McNaughton, O’Keefe, & Barnes, 1983; Schmidt, 1999). For exam-
95 ple, Georgopoulos and his colleagues were among the first to apply
96 a population-vector method to analyze ensemble firing patterns
97 corresponding to arm movements of monkeys (Georgopoulos, Sch-
98 wartz, & Kettner, 1986). By calculating the mean firing rates for
99 each neuron corresponding to arm movement, a set of population

100 vectors can be obtained that correspond to specific angles of arm
101 rotation and movement (Musallam, Corneil, Greger, Scherberger,
102 & Andersen, 2004; Nicolelis & Ribeiro, 2006; Velliste, Perel, Spal-
103 ding, Whitford, & Schwartz, 2008). Similarly, the discovery of place
104 cells in 1970s has prompted many researchers to examine how the
105 hippocampus encodes space (O’Keefe and Dostrovsky, 1971;
106 O’Keefe and Nadel, 1978). Multiple tetrodes techniques have been
107 successfully applied to the study of several dozens of place cells in
108 the rat hippocampus (Wilson & McNaughton, 1993). This has led to
109 extensive knowledge of how the hippocampal system may gener-
110 ate perceptual representation of the animal’s self-location during
111 spatial navigation (Buzsaki & Moser, 2013; Kentros, 2006; Lisman
112 & Redish, 2009; McNaughton, Battaglia, Jensen, Moser, & Moser,
113 2006; Mizumori, 2006; Oler, Penley, Sava, & Markus, 2008; Redish,
114 2001; Smith & Mizumori, 2006). Yet it remains unclear as to
115 whether motion-sensitive place cell firing would represent part
116 of long-term episodic memory for which the hippocampus is
117 known.
118 In parallel, development of region- and cell type-specific cre/
119 loxP conditional transgenic methods in mid 1990s has opened a
120 new door to studying gene, neural circuits, and behavior (Tsien,
121 Chen, et al., 1996; Tsien, Huerta, & Tonegawa, 1996). This Cre/loxP
122 method has also provided a useful platform for opsin-based optog-
123 enetics to restrict its manipulation to a given cell type within a
124 given region. We have provided some of the earliest evidence that
125 memory in mice can be impaired, enhanced, or rapidly erased by
126 genetic means (Cao et al., 2008; Cui et al., 2004; Shimizu, Tang,
127 Rampon, & Tsien, 2000; Tang et al., 1999; Tsien, Huerta, et al.,
128 1996; Wang et al., 2011). Because the hippocampus is widely
129 known for creating long-term memory of what event, when it
130 happened, and at where, this has led us to focus on the following
131 questions: what are real-time memory engrams underlying dra-
132 matic events or emotional experiences? Can real-time memory
133 traces be mathematically described and decoded at any given
134 moment? What are the organizing principles for memory-coding
135 cell assemblies in the hippocampus? How does the memory circuit
136 generate not only episodic memories but also semantic knowledge
137 and imagination?

138 2. Brain decoding project initiative for creating brain activity
139 map of memory engrams

140 To approach the above fundamental questions, it is obvious that
141 it would require large-scale decoding of brain activity patterns.
142 Over the course of past several years, we have focused our initial
143 efforts on three different but coherently linked aspects: (1) To
144 employ large-scale neural recording techniques to collect large
145 datasets on memory process in the mouse hippocampus; (2) To
146 use a set of innovative behavioral paradigms to facilitate the
147 discovery of memory organizing principles; (3) To develop and

148apply mathematical tools that are suitable for identification of neu-
149ral ensembles activity patterns and uncovering its underlying cell
150assembly structures.
151Based on our initial success in decoding event-related neural
152patterns in the mouse hippocampus (Lin, Osan, et al., 2006; Lin
153et al., 2005; Tsien, 2007), in 2008 we have obtained strong support
154from Georgia Research Alliance and launched the Brain Decoding
155Project Initiative to identify neural dynamics in the memory
156circuits (http://gra.org/Stories/StoryDetail/tabid/622/xmid/632/
157Default.aspx). The basic idea of our Brain Decoding Project, now
158similarly expressed by Brain Activity Map proposal (Alivisatos
159et al., 2012), is to investigate and discover the underlying organiz-
160ing principles by which the brain generates real-time perception,
161emotion, memory, knowledge, and behavior. Here, we share some
162of the insights and lessons from our brain decoding project effort
163which we believe may be useful to the planning of the BRAIN pro-
164ject that is currently underway:

1653. Large-scale neural recording capacity: how large is large
166enough to get started?

167Any brain decoding or activity mapping effort will face the
168question of how many neurons should be recorded in order to deci-
169pher the real-time brain code and more importantly to understand
170the basic designing principles. One of the grand claims in the Brain
171Activity Map proposal is to measure every spike from every neuron
172(Alivisatos et al., 2012). This has raised some theoretical questions
173as to whether the brain’s ‘‘emergent properties’’ can only be stud-
174ied by recording all spikes from all neurons in the brain (Mitra,
1752013). While collecting such complete information would be ideal,
176it may take more than fifteen years (the presumed time frame of
177the BRAIN project) before every spike of every neuron from a brain
178region of mammal species, say the hippocampus of freely behaving
179mice, can be achieved. Because the ultimate goal of the BRAIN pro-
180ject is to crack the brain code and establish its organizing princi-
181ples, researchers may approach it with more practical question
182as to what the sizes of the recorded neurons should be recorded
183to get this decoding problem going.
184In the case of the CA1 region of the hippocampus, it is known
185that pyramidal cells and diverse interneurons compose the intri-
186cate hippocampal circuits and are involved in various firing pat-
187terns. Much of current knowledge has been obtained from
188studies of in vitro brain slices (Freund & Buzsaki, 1996; Klausberger
189& Somogyi, 2008; Somogyi & Klausberger, 2005). Little is known
190about its detailed action on dynamic patterns of hippocampal cells
191during learning and memory. By taking the advantage of 96- or
192128-channel in vivo neural recording technique, we are allowed
193to monitor many pyramidal cells and interneurons from the CA1
194of freely behaving mice. Although the interneuron types identified
195in vitro or anesthetized state may not map clearly to those in freely
196behaving state, for simplicity we used these classification terms
197and identified at least seven major interneurons types, including
198known and unknown types of interneurons, based on their distinct
199firing patterns and compare with the in vitro results (Fig. 1A).
200Type-1 and type-2 interneurons were putative basket cells and
201bistratified cells according the characteristics of these cells (Buzsa-
202ki & Eidelberg, 1983; Klausberger & Somogyi, 2008; Somogyi &
203Klausberger, 2005). They were made of nearly half of recorded
204interneurons. These cells innervate pyramidal cell somas and den-
205drites. Type-3 and type-4 interneurons matched well with firing
206characteristics of Chandelier cells and O-LM cells, respectively.
207These putative Chandelier cells and O-LM cells interneurons
208tended to fire during the period when pyramidal cells were silent.
209Cross-correlation analyses confirmed their negative dynamic
210correlation with pyramidal cells. These four types of interneurons
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