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When the results of a measurement are transferred from one stage in the chain of traceability
to the next, the information gathered about the measurement is summarised. The summary
involves, for example, details about applied measurement methods, environmental condi-
tions, and measurement results including measurement uncertainty. The information about
uncertainty usually takes the form of summary statistics such as an estimate, a standard
deviation and a coverage interval specified by two quantiles. The information is used to con-
struct a probability distribution for a given property or characteristic of an artefact, which is
needed when the artefact is used as a reference in a subsequent stage. But in order to ensure
impartiality in the process to establish the probability distribution, a general rule should be
applied, for example, the principle of maximum entropy. In this paper, the application of this
principle to establish a probability distribution when the mentioned summary statistics are
available will be discussed, and its extension to moment constraints to satisfy the require-
ments of metrology will be introduced.
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1. Introduction

Establishing traceability in metrology requires that
measurement results can be linked to references through
a documented unbroken chain ([1]). Consider the following
simple example. At the first stage of a traceability chain, an
artefact has been calibrated, for example, a steel rule. As a
result of the calibration, the expectation of a parameter
characterising the artefact, for example, the deviation from
nominal value, is given with the associated standard
deviation and two quantiles, but without any information
about the probability distribution for the parameter. The
artefact is then used in a subsequent stage as a reference
standard. At the formulation stage of uncertainty
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evaluation of the subsequent stage, the information about
the parameter is used to assign a probability distribution
for the parameter [2]. To ensure impartiality in the process
to assign the probability distribution, it is recommended in
Section 6 of the GUMS1 [3] to use the principle of maxi-
mum entropy. Since the GUM [4] and its supplements are
key documents giving harmonised procedures for uncer-
tainty evaluation in metrology, it is important to provide
explicit tools for the assignment of a probability distribu-
tion for a quantity when the available information is that
most commonly encountered in metrology, i.e., an esti-
mate, a standard deviation and quantiles, regardless of
whether they ware calculated according to GUM, GUMS1
or to any other guidelines. It is worth emphasising, that
the method presented in this paper will be interesting only
in cases when quantiles and higher moments do not
introduce redundant information. An example might be a
situation when we are interpreting the results of Monte
Carlo simulations applied to the model for which the
conditions of applicability of central limit theorem have
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not been met. This may be due to non-linearity of the mea-
surement model or the impact of non-Gaussian influence
factors, but what is most important here is that often, the
distribution cannot be expressed explicitly in a closed
form.

The paper is organised as follows. First, the concept of
entropy and maximum entropy principle will be intro-
duced including several potential applications. Next, the
general framework for evaluating maximum entropy
distribution using Lagrange multipliers will be discussed.
Further, it will be elaborated on how this technique
can be applied to cases when moments of a distribution
are known. This topic is very well known and widely
described in the literature. However, it will provide
background for further considerations. In the following
section it will be explained how the mentioned technique
can by applied to evaluate maximum entropy distribution
specified by moments and quantiles. Those considerations
will be backed by two numerical experiments constructed
in such a way that they will allow verification of presented
results.

2. Entropy and the maximum entropy principle

In this paper, the concept of entropy taken from infor-
mation theory, the so-called Shannon entropy [5], will be
considered. Since the concept of entropy originated in
physics, and was then strongly developed for use in infor-
mation theory, it is not an easy task to provide an intuitive
interpretation of the concept appropriate to the topic of
uncertainty evaluation. Entropy is often regarded as an
expectation of information content. Information content
itself is a measure of "informativeness” of a given possible
outcome. Therefore, by selecting the maximum entropy
distribution we select a least informative distribution.
Principle of maximum entropy was introduced by Jaynes
in [6]. Since then, this principle found many applications
for example [7-10].

For a continuous one-dimensional random variable X
described by a probability density function p(x) that has
infinite support, the entropy h is defined by the functional

hipeol = K [ " px) logp(x)d, 2.1)

where K is a constant value. Here, squared brackets are
used to embrace the argument of a functional. We will
restrict ourselves in this paper to the case described above,
although the presented framework can be applied to other
cases as well, e.g. for a random variable that has support
bounded from both sides. Furthermore it will be assumed
that K = 1.

Using the principle of maximum entropy, summary sta-
tistics may be used to determine the distribution of the
random variable. For example, if only available information
is that it has finite support, then according to the principle
of maximum entropy a rectangular distribution should be
assigned to the variable. Many other commonly encoun-
tered cases are also well known. For example, GUMSI1 [3]
treats situations when we have different knowledge about
the random variable and its distribution. Furthermore,

maximum entropy distributions under moment con-
straints have been widely studied. Nevertheless, there is
still a lack of study about cases when other summary
statistics are known, such as the median, quartile range,
quantiles of various orders together with classical
moments. Such statistics can be the outcome of a calcula-
tion of uncertainty when an expectation and expanded
uncertainty are insufficient to summarise the results. The
development of a general framework will not only provide
the means to reconstruct the distribution from such sum-
mary information, but also could popularise the applica-
tion of more robust summary statistics based on ranks,
and overall give rise to new important results. However,
one have to keep in mind that when applying principle of
maximum entropy, the random variable, for which the
distribution was evaluated on the basis of limited informa-
tion, by no means, is identical to the state-of-knowledge
distribution. The difference between these two distribu-
tions will reflect the loss of information due to an
imperfect way of summarising information about
uncertainty. This fact can be used to asses applicability of
various frameworks.

3. Maximum entropy framework

Recall that entropy, as most summary statistics, is a
functional. Maximisation of a functional is an optimisation
problem and we may use the method of Lagrange multipli-
ers to obtain its solution. The general form for the Lagrang-
ian, in the case when we wish to determine the argument
p(x) that minimises the function f[p(x)] under N constraints
&lp(x)] = ci is

N
L[p(x), 4] = f[p(x)] = > _k(g[p(x)] - i),

i=1
where /; are Lagrange multipliers. To find a maximum of
flp(x)], we seek to minimise the objective function
—f[p(x)] by solving the system of equations

oL[p(x),4] _
o) = (3.1)
oL[p(x),4] _
—o O 32)

where Eq. (3.1) defines a stationary point and Eq. (3.2)
defines arguments for which the constraints are satisfied.
By solving the above equations with f[p(x)] replaced by
the entropy h and the constraints expressing the given
information about the distribution, we can determine the
maximum entropy distribution. Furthermore, by exploring
the properties of those equations we may also specify the
family of distributions to which the maximum entropy
distribution belongs.

4. Maximum entropy distribution determined by
moments

It is assumed that if the moments of the distribution are
known, it is possible to specify the family of distributions
to which the corresponding maximum entropy distribution
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